Fan Yang , Jing Zhao , Zhengang Wu , Yingna Wei , Hengyong Wei , Jingwu Li , Bo Li
{"title":"5- 氟尿嘧啶药物共晶体的制备和表征及其通过 SERS 光谱对共晶体化过程的动态监测","authors":"Fan Yang , Jing Zhao , Zhengang Wu , Yingna Wei , Hengyong Wei , Jingwu Li , Bo Li","doi":"10.1016/j.vibspec.2024.103749","DOIUrl":null,"url":null,"abstract":"<div><div>Cocrystal is a new class of pharmaceutical crystal form, which could improve the physical and chemical properties of drug substance without affecting the internal structure of drug substance. Therefore, the cocrystals show a great deal of potential in the development and research of drugs. 5-Fluorouracil (5-FU) is one of the most widely used anti-pyrimidine drugs. However, its solubility is poor and its oral bioavailability is low. In this work, the cocrystal of 5-FU with nicotinamide was prepared by the solvent evaporation method. The cocrystal structure was confirmed by infrared spectroscopy (IR), X-ray diffraction (XRD) and Raman spectroscopy. The X-ray diffraction and infrared spectroscopy presented that there were significantly different peaks between the raw drug and the cocrystal. Raman spectral results also indicated the differences of such cocrystal compared with the raw drug. In addition, TiN-Ag composite SERS substrate was used to study the formation of 5-FU cocrystal drugs and the formation process was dynamically monitored, and the interaction between molecules during the cocrystal reaction was deeply understood. The cocrystal reaction process was tracked, it can be found that the peak intensity of the raw drug and cocrystal changes with the reaction, indicating that the TiN-Ag composite substrate can monitor the cocrystal transformation process.</div></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"135 ","pages":"Article 103749"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and characterization of 5-fluorouracil drug cocrystal and its dynamic monitoring of cocrystallization process via SERS spectroscopy\",\"authors\":\"Fan Yang , Jing Zhao , Zhengang Wu , Yingna Wei , Hengyong Wei , Jingwu Li , Bo Li\",\"doi\":\"10.1016/j.vibspec.2024.103749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cocrystal is a new class of pharmaceutical crystal form, which could improve the physical and chemical properties of drug substance without affecting the internal structure of drug substance. Therefore, the cocrystals show a great deal of potential in the development and research of drugs. 5-Fluorouracil (5-FU) is one of the most widely used anti-pyrimidine drugs. However, its solubility is poor and its oral bioavailability is low. In this work, the cocrystal of 5-FU with nicotinamide was prepared by the solvent evaporation method. The cocrystal structure was confirmed by infrared spectroscopy (IR), X-ray diffraction (XRD) and Raman spectroscopy. The X-ray diffraction and infrared spectroscopy presented that there were significantly different peaks between the raw drug and the cocrystal. Raman spectral results also indicated the differences of such cocrystal compared with the raw drug. In addition, TiN-Ag composite SERS substrate was used to study the formation of 5-FU cocrystal drugs and the formation process was dynamically monitored, and the interaction between molecules during the cocrystal reaction was deeply understood. The cocrystal reaction process was tracked, it can be found that the peak intensity of the raw drug and cocrystal changes with the reaction, indicating that the TiN-Ag composite substrate can monitor the cocrystal transformation process.</div></div>\",\"PeriodicalId\":23656,\"journal\":{\"name\":\"Vibrational Spectroscopy\",\"volume\":\"135 \",\"pages\":\"Article 103749\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vibrational Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924203124001024\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibrational Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924203124001024","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Preparation and characterization of 5-fluorouracil drug cocrystal and its dynamic monitoring of cocrystallization process via SERS spectroscopy
Cocrystal is a new class of pharmaceutical crystal form, which could improve the physical and chemical properties of drug substance without affecting the internal structure of drug substance. Therefore, the cocrystals show a great deal of potential in the development and research of drugs. 5-Fluorouracil (5-FU) is one of the most widely used anti-pyrimidine drugs. However, its solubility is poor and its oral bioavailability is low. In this work, the cocrystal of 5-FU with nicotinamide was prepared by the solvent evaporation method. The cocrystal structure was confirmed by infrared spectroscopy (IR), X-ray diffraction (XRD) and Raman spectroscopy. The X-ray diffraction and infrared spectroscopy presented that there were significantly different peaks between the raw drug and the cocrystal. Raman spectral results also indicated the differences of such cocrystal compared with the raw drug. In addition, TiN-Ag composite SERS substrate was used to study the formation of 5-FU cocrystal drugs and the formation process was dynamically monitored, and the interaction between molecules during the cocrystal reaction was deeply understood. The cocrystal reaction process was tracked, it can be found that the peak intensity of the raw drug and cocrystal changes with the reaction, indicating that the TiN-Ag composite substrate can monitor the cocrystal transformation process.
期刊介绍:
Vibrational Spectroscopy provides a vehicle for the publication of original research that focuses on vibrational spectroscopy. This covers infrared, near-infrared and Raman spectroscopies and publishes papers dealing with developments in applications, theory, techniques and instrumentation.
The topics covered by the journal include:
Sampling techniques,
Vibrational spectroscopy coupled with separation techniques,
Instrumentation (Fourier transform, conventional and laser based),
Data manipulation,
Spectra-structure correlation and group frequencies.
The application areas covered include:
Analytical chemistry,
Bio-organic and bio-inorganic chemistry,
Organic chemistry,
Inorganic chemistry,
Catalysis,
Environmental science,
Industrial chemistry,
Materials science,
Physical chemistry,
Polymer science,
Process control,
Specialized problem solving.