Chanjuan Wang , Huilan Luo , Jiyuan Wang , Daniel Groom
{"title":"ReUNet:用于矿物加工中精确矿石分割的高效深度学习","authors":"Chanjuan Wang , Huilan Luo , Jiyuan Wang , Daniel Groom","doi":"10.1016/j.cageo.2024.105773","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient ore segmentation plays a pivotal role in advancing mineral processing technologies. With the rise of computer vision, deep learning models like UNet have increasingly outperformed traditional methods in automatic segmentation tasks. Despite these advancements, the substantial computational demands of such models have hindered their widespread adoption in practical production environments. To overcome this limitation, we developed ReUNet, a lightweight and efficient model tailored for mineral image segmentation. ReUNet optimizes computational efficiency by selectively focusing on critical spatial and channel information, boasting only 1.7 million parameters and 24.88 GFLOPS. It delivers superior segmentation performance across three public datasets (CuV1, FeMV1, and Pellets) and achieves the most accurate average particle size estimation, closely matching the true values. Our findings underscore ReUNet’s potential as a highly effective tool for mineral image analysis, offering both precision and efficiency in processing mineral images.</div></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"195 ","pages":"Article 105773"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ReUNet: Efficient deep learning for precise ore segmentation in mineral processing\",\"authors\":\"Chanjuan Wang , Huilan Luo , Jiyuan Wang , Daniel Groom\",\"doi\":\"10.1016/j.cageo.2024.105773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Efficient ore segmentation plays a pivotal role in advancing mineral processing technologies. With the rise of computer vision, deep learning models like UNet have increasingly outperformed traditional methods in automatic segmentation tasks. Despite these advancements, the substantial computational demands of such models have hindered their widespread adoption in practical production environments. To overcome this limitation, we developed ReUNet, a lightweight and efficient model tailored for mineral image segmentation. ReUNet optimizes computational efficiency by selectively focusing on critical spatial and channel information, boasting only 1.7 million parameters and 24.88 GFLOPS. It delivers superior segmentation performance across three public datasets (CuV1, FeMV1, and Pellets) and achieves the most accurate average particle size estimation, closely matching the true values. Our findings underscore ReUNet’s potential as a highly effective tool for mineral image analysis, offering both precision and efficiency in processing mineral images.</div></div>\",\"PeriodicalId\":55221,\"journal\":{\"name\":\"Computers & Geosciences\",\"volume\":\"195 \",\"pages\":\"Article 105773\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098300424002565\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424002565","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
ReUNet: Efficient deep learning for precise ore segmentation in mineral processing
Efficient ore segmentation plays a pivotal role in advancing mineral processing technologies. With the rise of computer vision, deep learning models like UNet have increasingly outperformed traditional methods in automatic segmentation tasks. Despite these advancements, the substantial computational demands of such models have hindered their widespread adoption in practical production environments. To overcome this limitation, we developed ReUNet, a lightweight and efficient model tailored for mineral image segmentation. ReUNet optimizes computational efficiency by selectively focusing on critical spatial and channel information, boasting only 1.7 million parameters and 24.88 GFLOPS. It delivers superior segmentation performance across three public datasets (CuV1, FeMV1, and Pellets) and achieves the most accurate average particle size estimation, closely matching the true values. Our findings underscore ReUNet’s potential as a highly effective tool for mineral image analysis, offering both precision and efficiency in processing mineral images.
期刊介绍:
Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.