作为储能应用电极材料的 FeMoO4/r-GO 纳米复合材料的合成与结构表征

IF 4.4 3区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Communications Pub Date : 2024-11-17 DOI:10.1016/j.inoche.2024.113565
P. Jayanthi , J. Duraimurugan , Prabhu Sengodan , R. Siranjeevi , F. Mary Anjalin , N. Bhuvaneshwari , I.M. Ashraf , Mohd. Shkir
{"title":"作为储能应用电极材料的 FeMoO4/r-GO 纳米复合材料的合成与结构表征","authors":"P. Jayanthi ,&nbsp;J. Duraimurugan ,&nbsp;Prabhu Sengodan ,&nbsp;R. Siranjeevi ,&nbsp;F. Mary Anjalin ,&nbsp;N. Bhuvaneshwari ,&nbsp;I.M. Ashraf ,&nbsp;Mohd. Shkir","doi":"10.1016/j.inoche.2024.113565","DOIUrl":null,"url":null,"abstract":"<div><div>Improving the energy density of electrochemical supercapacitors requires the urgent development of novel electroactive materials. Metal molybdate-based nanostructures are promising candidates as effective electrode materials for the next generation of energy storage solutions. In the present work, a FeMoO<sub>4</sub>/r-GO nanocomposite was synthesized via the hydrothermal method and used as anode material for supercapacitor application. The structural, and topographical properties were investigated by XRD, FE-SEM, and TEM analysis. Field Emission Scanning Electron Microscopy (FE-SEM) and Transmission electron microscope (TEM) images of FeMoO<sub>4</sub>/reduced graphene oxide (r-GO) composites show an irregular, rod-like structure coated with r-GO sheets. The FeMoO<sub>4</sub>/r-GO nanocomposite electrode material exhibited a remarkable specific capacitance of 240 F/g at the current density of 1 A/g, which is significantly higher than the 167 F/g capacitance of pure FeMoO<sub>4</sub>. The continued charge–discharge (GCD) (5,000) life cycle performance of FeMoO<sub>4</sub>/r-GO was the retention and coulombic efficiency of 90 % to 86 % after 10 A/g.</div></div>","PeriodicalId":13609,"journal":{"name":"Inorganic Chemistry Communications","volume":"171 ","pages":"Article 113565"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, and structural characterization of FeMoO4/r-GO nanocomposite as an electrode material for energy storage application\",\"authors\":\"P. Jayanthi ,&nbsp;J. Duraimurugan ,&nbsp;Prabhu Sengodan ,&nbsp;R. Siranjeevi ,&nbsp;F. Mary Anjalin ,&nbsp;N. Bhuvaneshwari ,&nbsp;I.M. Ashraf ,&nbsp;Mohd. Shkir\",\"doi\":\"10.1016/j.inoche.2024.113565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Improving the energy density of electrochemical supercapacitors requires the urgent development of novel electroactive materials. Metal molybdate-based nanostructures are promising candidates as effective electrode materials for the next generation of energy storage solutions. In the present work, a FeMoO<sub>4</sub>/r-GO nanocomposite was synthesized via the hydrothermal method and used as anode material for supercapacitor application. The structural, and topographical properties were investigated by XRD, FE-SEM, and TEM analysis. Field Emission Scanning Electron Microscopy (FE-SEM) and Transmission electron microscope (TEM) images of FeMoO<sub>4</sub>/reduced graphene oxide (r-GO) composites show an irregular, rod-like structure coated with r-GO sheets. The FeMoO<sub>4</sub>/r-GO nanocomposite electrode material exhibited a remarkable specific capacitance of 240 F/g at the current density of 1 A/g, which is significantly higher than the 167 F/g capacitance of pure FeMoO<sub>4</sub>. The continued charge–discharge (GCD) (5,000) life cycle performance of FeMoO<sub>4</sub>/r-GO was the retention and coulombic efficiency of 90 % to 86 % after 10 A/g.</div></div>\",\"PeriodicalId\":13609,\"journal\":{\"name\":\"Inorganic Chemistry Communications\",\"volume\":\"171 \",\"pages\":\"Article 113565\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387700324015557\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387700324015557","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

要提高电化学超级电容器的能量密度,迫切需要开发新型电活性材料。基于钼酸盐的金属纳米结构有望成为下一代储能解决方案的有效电极材料。本研究通过水热法合成了一种 FeMoO4/r-GO 纳米复合材料,并将其用作超级电容器的阳极材料。通过 XRD、FE-SEM 和 TEM 分析研究了其结构和形貌特性。FeMoO4/还原氧化石墨烯(r-GO)复合材料的场发射扫描电子显微镜(FE-SEM)和透射电子显微镜(TEM)图像显示了涂有 r-GO 片的不规则棒状结构。在电流密度为 1 A/g 时,FeMoO4/r-GO 纳米复合电极材料的比电容高达 240 F/g,明显高于纯 FeMoO4 的 167 F/g。FeMoO4/r-GO的持续充放电(GCD)(5,000)寿命周期表现为10 A/g后的保持率和库仑效率分别为90%和86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis, and structural characterization of FeMoO4/r-GO nanocomposite as an electrode material for energy storage application
Improving the energy density of electrochemical supercapacitors requires the urgent development of novel electroactive materials. Metal molybdate-based nanostructures are promising candidates as effective electrode materials for the next generation of energy storage solutions. In the present work, a FeMoO4/r-GO nanocomposite was synthesized via the hydrothermal method and used as anode material for supercapacitor application. The structural, and topographical properties were investigated by XRD, FE-SEM, and TEM analysis. Field Emission Scanning Electron Microscopy (FE-SEM) and Transmission electron microscope (TEM) images of FeMoO4/reduced graphene oxide (r-GO) composites show an irregular, rod-like structure coated with r-GO sheets. The FeMoO4/r-GO nanocomposite electrode material exhibited a remarkable specific capacitance of 240 F/g at the current density of 1 A/g, which is significantly higher than the 167 F/g capacitance of pure FeMoO4. The continued charge–discharge (GCD) (5,000) life cycle performance of FeMoO4/r-GO was the retention and coulombic efficiency of 90 % to 86 % after 10 A/g.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry Communications
Inorganic Chemistry Communications 化学-无机化学与核化学
CiteScore
5.50
自引率
7.90%
发文量
1013
审稿时长
53 days
期刊介绍: Launched in January 1998, Inorganic Chemistry Communications is an international journal dedicated to the rapid publication of short communications in the major areas of inorganic, organometallic and supramolecular chemistry. Topics include synthetic and reaction chemistry, kinetics and mechanisms of reactions, bioinorganic chemistry, photochemistry and the use of metal and organometallic compounds in stoichiometric and catalytic synthesis or organic compounds.
期刊最新文献
A comprehensive analysis of structural, electronic, optical, mechanical, thermodynamic, and thermoelectric properties of direct band gap Sr3BF3 (B = As, Sb) photovoltaic compounds: DFT-GGA and mBJ approach Insights from computational analysis on novel Lead-Free FrGeCl3 perovskite solar cell using DFT and SCAPS-1D Effective removal of tetracycline hydrochloride from wastewater over porous Co3O4@NC/honeycomb ceramics by Fenton-like catalysis A simple preparation method of Ti/TiO2/BiVO4 and implications for enhanced photoelectrocatalytic performance under visible light illumination Highly sensitive, selective and rapid in-vitro electrochemical sensing of dopamine achieved on oxygen deficient nickel oxide/partially reduced graphene oxide (NiOx/p-rGO) nanocomposite platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1