P. Jayanthi , J. Duraimurugan , Prabhu Sengodan , R. Siranjeevi , F. Mary Anjalin , N. Bhuvaneshwari , I.M. Ashraf , Mohd. Shkir
{"title":"作为储能应用电极材料的 FeMoO4/r-GO 纳米复合材料的合成与结构表征","authors":"P. Jayanthi , J. Duraimurugan , Prabhu Sengodan , R. Siranjeevi , F. Mary Anjalin , N. Bhuvaneshwari , I.M. Ashraf , Mohd. Shkir","doi":"10.1016/j.inoche.2024.113565","DOIUrl":null,"url":null,"abstract":"<div><div>Improving the energy density of electrochemical supercapacitors requires the urgent development of novel electroactive materials. Metal molybdate-based nanostructures are promising candidates as effective electrode materials for the next generation of energy storage solutions. In the present work, a FeMoO<sub>4</sub>/r-GO nanocomposite was synthesized via the hydrothermal method and used as anode material for supercapacitor application. The structural, and topographical properties were investigated by XRD, FE-SEM, and TEM analysis. Field Emission Scanning Electron Microscopy (FE-SEM) and Transmission electron microscope (TEM) images of FeMoO<sub>4</sub>/reduced graphene oxide (r-GO) composites show an irregular, rod-like structure coated with r-GO sheets. The FeMoO<sub>4</sub>/r-GO nanocomposite electrode material exhibited a remarkable specific capacitance of 240 F/g at the current density of 1 A/g, which is significantly higher than the 167 F/g capacitance of pure FeMoO<sub>4</sub>. The continued charge–discharge (GCD) (5,000) life cycle performance of FeMoO<sub>4</sub>/r-GO was the retention and coulombic efficiency of 90 % to 86 % after 10 A/g.</div></div>","PeriodicalId":13609,"journal":{"name":"Inorganic Chemistry Communications","volume":"171 ","pages":"Article 113565"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, and structural characterization of FeMoO4/r-GO nanocomposite as an electrode material for energy storage application\",\"authors\":\"P. Jayanthi , J. Duraimurugan , Prabhu Sengodan , R. Siranjeevi , F. Mary Anjalin , N. Bhuvaneshwari , I.M. Ashraf , Mohd. Shkir\",\"doi\":\"10.1016/j.inoche.2024.113565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Improving the energy density of electrochemical supercapacitors requires the urgent development of novel electroactive materials. Metal molybdate-based nanostructures are promising candidates as effective electrode materials for the next generation of energy storage solutions. In the present work, a FeMoO<sub>4</sub>/r-GO nanocomposite was synthesized via the hydrothermal method and used as anode material for supercapacitor application. The structural, and topographical properties were investigated by XRD, FE-SEM, and TEM analysis. Field Emission Scanning Electron Microscopy (FE-SEM) and Transmission electron microscope (TEM) images of FeMoO<sub>4</sub>/reduced graphene oxide (r-GO) composites show an irregular, rod-like structure coated with r-GO sheets. The FeMoO<sub>4</sub>/r-GO nanocomposite electrode material exhibited a remarkable specific capacitance of 240 F/g at the current density of 1 A/g, which is significantly higher than the 167 F/g capacitance of pure FeMoO<sub>4</sub>. The continued charge–discharge (GCD) (5,000) life cycle performance of FeMoO<sub>4</sub>/r-GO was the retention and coulombic efficiency of 90 % to 86 % after 10 A/g.</div></div>\",\"PeriodicalId\":13609,\"journal\":{\"name\":\"Inorganic Chemistry Communications\",\"volume\":\"171 \",\"pages\":\"Article 113565\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1387700324015557\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387700324015557","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Synthesis, and structural characterization of FeMoO4/r-GO nanocomposite as an electrode material for energy storage application
Improving the energy density of electrochemical supercapacitors requires the urgent development of novel electroactive materials. Metal molybdate-based nanostructures are promising candidates as effective electrode materials for the next generation of energy storage solutions. In the present work, a FeMoO4/r-GO nanocomposite was synthesized via the hydrothermal method and used as anode material for supercapacitor application. The structural, and topographical properties were investigated by XRD, FE-SEM, and TEM analysis. Field Emission Scanning Electron Microscopy (FE-SEM) and Transmission electron microscope (TEM) images of FeMoO4/reduced graphene oxide (r-GO) composites show an irregular, rod-like structure coated with r-GO sheets. The FeMoO4/r-GO nanocomposite electrode material exhibited a remarkable specific capacitance of 240 F/g at the current density of 1 A/g, which is significantly higher than the 167 F/g capacitance of pure FeMoO4. The continued charge–discharge (GCD) (5,000) life cycle performance of FeMoO4/r-GO was the retention and coulombic efficiency of 90 % to 86 % after 10 A/g.
期刊介绍:
Launched in January 1998, Inorganic Chemistry Communications is an international journal dedicated to the rapid publication of short communications in the major areas of inorganic, organometallic and supramolecular chemistry. Topics include synthetic and reaction chemistry, kinetics and mechanisms of reactions, bioinorganic chemistry, photochemistry and the use of metal and organometallic compounds in stoichiometric and catalytic synthesis or organic compounds.