动画拉玛驱动手势动画

IF 2.7 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Computer Graphics Forum Pub Date : 2024-10-17 DOI:10.1111/cgf.15167
J. Windle, I. Matthews, S. Taylor
{"title":"动画拉玛驱动手势动画","authors":"J. Windle,&nbsp;I. Matthews,&nbsp;S. Taylor","doi":"10.1111/cgf.15167","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Co-speech gesturing is an important modality in conversation, providing context and social cues. In character animation, appropriate and synchronised gestures add realism, and can make interactive agents more engaging. Historically, methods for automatically generating gestures were predominantly audio-driven, exploiting the prosodic and speech-related content that is encoded in the audio signal. In this paper we instead experiment with using Large-Language Model (LLM) features for gesture generation that are extracted from text using <i>L<span>lama</span></i>2. We compare against audio features, and explore combining the two modalities in both objective tests and a user study. Surprisingly, our results show that <i>L<span>lama</span></i>2 features on their own perform significantly better than audio features and that including both modalities yields no significant difference to using <i>L<span>lama</span></i>2 features in isolation. We demonstrate that the <i>L<span>lama</span></i>2 based model can generate both beat and semantic gestures without any audio input, suggesting LLMs can provide rich encodings that are well suited for gesture generation.</p>\n </div>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 8","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.15167","citationCount":"0","resultStr":"{\"title\":\"Llanimation: Llama Driven Gesture Animation\",\"authors\":\"J. Windle,&nbsp;I. Matthews,&nbsp;S. Taylor\",\"doi\":\"10.1111/cgf.15167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Co-speech gesturing is an important modality in conversation, providing context and social cues. In character animation, appropriate and synchronised gestures add realism, and can make interactive agents more engaging. Historically, methods for automatically generating gestures were predominantly audio-driven, exploiting the prosodic and speech-related content that is encoded in the audio signal. In this paper we instead experiment with using Large-Language Model (LLM) features for gesture generation that are extracted from text using <i>L<span>lama</span></i>2. We compare against audio features, and explore combining the two modalities in both objective tests and a user study. Surprisingly, our results show that <i>L<span>lama</span></i>2 features on their own perform significantly better than audio features and that including both modalities yields no significant difference to using <i>L<span>lama</span></i>2 features in isolation. We demonstrate that the <i>L<span>lama</span></i>2 based model can generate both beat and semantic gestures without any audio input, suggesting LLMs can provide rich encodings that are well suited for gesture generation.</p>\\n </div>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"43 8\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.15167\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15167\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15167","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

协同语音手势是对话中的一种重要方式,可提供语境和社交线索。在角色动画中,适当的同步手势能增加真实感,并能使交互式代理更具吸引力。一直以来,自动生成手势的方法主要由音频驱动,利用音频信号中编码的前音和语音相关内容。在本文中,我们尝试使用大语言模型(LLM)特征来生成手势,这些特征是使用 Llama2 从文本中提取的。我们将其与音频特征进行了比较,并在客观测试和用户研究中探索了两种模式的结合。令人惊讶的是,我们的结果表明,Llama2 特征本身的性能明显优于音频特征,而将两种模式结合使用与单独使用 Llama2 特征相比没有显著差异。我们证明,基于 Llama2 的模型可以在没有任何音频输入的情况下生成节拍和语义手势,这表明 LLM 可以提供非常适合手势生成的丰富编码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Llanimation: Llama Driven Gesture Animation

Co-speech gesturing is an important modality in conversation, providing context and social cues. In character animation, appropriate and synchronised gestures add realism, and can make interactive agents more engaging. Historically, methods for automatically generating gestures were predominantly audio-driven, exploiting the prosodic and speech-related content that is encoded in the audio signal. In this paper we instead experiment with using Large-Language Model (LLM) features for gesture generation that are extracted from text using Llama2. We compare against audio features, and explore combining the two modalities in both objective tests and a user study. Surprisingly, our results show that Llama2 features on their own perform significantly better than audio features and that including both modalities yields no significant difference to using Llama2 features in isolation. We demonstrate that the Llama2 based model can generate both beat and semantic gestures without any audio input, suggesting LLMs can provide rich encodings that are well suited for gesture generation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Graphics Forum
Computer Graphics Forum 工程技术-计算机:软件工程
CiteScore
5.80
自引率
12.00%
发文量
175
审稿时长
3-6 weeks
期刊介绍: Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.
期刊最新文献
Front Matter DiffPop: Plausibility-Guided Object Placement Diffusion for Image Composition Front Matter LGSur-Net: A Local Gaussian Surface Representation Network for Upsampling Highly Sparse Point Cloud 𝒢-Style: Stylized Gaussian Splatting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1