József Szőlősi, Béla J. Szekeres, Péter Magyar, Bán Adrián, Gábor Farkas, Mátyás Andó
{"title":"在自定义小型数据集上利用图像处理进行焊接缺陷检测:比较研究","authors":"József Szőlősi, Béla J. Szekeres, Péter Magyar, Bán Adrián, Gábor Farkas, Mátyás Andó","doi":"10.1049/cim2.70005","DOIUrl":null,"url":null,"abstract":"<p>This work focuses on detecting defects in welding seams using the most advanced <i>You Only Look Once (YOLO)</i> algorithms and transfer learning. To this end, the authors prepared a small dataset of images using manual welding and compared the performance of the <i>YOLO</i> v5, v6, v7, and v8 methods after two-step training. Key findings reveal that <i>YOLOv7</i> demonstrates superior performance, suggesting its potential as a valuable tool in automated welding quality control. The authors’ research underscores the importance of model selection. It lays the groundwork for future exploration in larger datasets and varied welding scenarios, potentially contributing to defect detection practices in manufacturing industries. The dataset and the code repository links are also provided to support our findings.</p>","PeriodicalId":33286,"journal":{"name":"IET Collaborative Intelligent Manufacturing","volume":"6 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.70005","citationCount":"0","resultStr":"{\"title\":\"Welding defect detection with image processing on a custom small dataset: A comparative study\",\"authors\":\"József Szőlősi, Béla J. Szekeres, Péter Magyar, Bán Adrián, Gábor Farkas, Mátyás Andó\",\"doi\":\"10.1049/cim2.70005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work focuses on detecting defects in welding seams using the most advanced <i>You Only Look Once (YOLO)</i> algorithms and transfer learning. To this end, the authors prepared a small dataset of images using manual welding and compared the performance of the <i>YOLO</i> v5, v6, v7, and v8 methods after two-step training. Key findings reveal that <i>YOLOv7</i> demonstrates superior performance, suggesting its potential as a valuable tool in automated welding quality control. The authors’ research underscores the importance of model selection. It lays the groundwork for future exploration in larger datasets and varied welding scenarios, potentially contributing to defect detection practices in manufacturing industries. The dataset and the code repository links are also provided to support our findings.</p>\",\"PeriodicalId\":33286,\"journal\":{\"name\":\"IET Collaborative Intelligent Manufacturing\",\"volume\":\"6 4\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cim2.70005\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Collaborative Intelligent Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cim2.70005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Collaborative Intelligent Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cim2.70005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Welding defect detection with image processing on a custom small dataset: A comparative study
This work focuses on detecting defects in welding seams using the most advanced You Only Look Once (YOLO) algorithms and transfer learning. To this end, the authors prepared a small dataset of images using manual welding and compared the performance of the YOLO v5, v6, v7, and v8 methods after two-step training. Key findings reveal that YOLOv7 demonstrates superior performance, suggesting its potential as a valuable tool in automated welding quality control. The authors’ research underscores the importance of model selection. It lays the groundwork for future exploration in larger datasets and varied welding scenarios, potentially contributing to defect detection practices in manufacturing industries. The dataset and the code repository links are also provided to support our findings.
期刊介绍:
IET Collaborative Intelligent Manufacturing is a Gold Open Access journal that focuses on the development of efficient and adaptive production and distribution systems. It aims to meet the ever-changing market demands by publishing original research on methodologies and techniques for the application of intelligence, data science, and emerging information and communication technologies in various aspects of manufacturing, such as design, modeling, simulation, planning, and optimization of products, processes, production, and assembly.
The journal is indexed in COMPENDEX (Elsevier), Directory of Open Access Journals (DOAJ), Emerging Sources Citation Index (Clarivate Analytics), INSPEC (IET), SCOPUS (Elsevier) and Web of Science (Clarivate Analytics).