Shoumeng Yang, Yi Tang, Yu Yao, Shengnan He, Zhijun Wu, Yang Yang, Hongge Pan, Xianhong Rui, Yan Yu
{"title":"用于全固态钠电池的硫化物电解质:基本原理和改性策略。","authors":"Shoumeng Yang, Yi Tang, Yu Yao, Shengnan He, Zhijun Wu, Yang Yang, Hongge Pan, Xianhong Rui, Yan Yu","doi":"10.1039/d4mh01218f","DOIUrl":null,"url":null,"abstract":"<p><p>Sulfide solid-state electrolytes (SSSEs) have garnered overwhelming attention as promising candidates for high-energy-density all-solid-state sodium batteries (ASSSBs) due to their high room-temperature ionic conductivity and excellent mechanical properties. However, the poor chemical/electrochemical stability, narrow electrochemical windows, and limited adaptability to cathodes/anodes of SSSEs hinder the performance and application of SSSEs in ASSSBs. Consequently, a comprehensive understanding of the preparation methods, fundamental properties, modification techniques, and compatibility strategies between SSSEs and electrodes is crucial for the advancement of SSSE-based ASSSBs. This review summarizes the SSSEs based on their compositional makeup and crystal structure, aiming to elucidate the Na<sup>+</sup> conduction mechanisms. It also provides an overview of modification strategies designed to enhance ionic conductivity, chemical/electrochemical stability, and interfacial compatibility with electrodes. Furthermore, we outline the challenges and strategies related to the interfaces of SSSEs with cathodes/anodes. Finally, we discuss the existing challenges facing SSSEs and propose the future research directions for SSSE-based ASSSBs.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sulfide electrolytes for all-solid-state sodium batteries: fundamentals and modification strategies.\",\"authors\":\"Shoumeng Yang, Yi Tang, Yu Yao, Shengnan He, Zhijun Wu, Yang Yang, Hongge Pan, Xianhong Rui, Yan Yu\",\"doi\":\"10.1039/d4mh01218f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sulfide solid-state electrolytes (SSSEs) have garnered overwhelming attention as promising candidates for high-energy-density all-solid-state sodium batteries (ASSSBs) due to their high room-temperature ionic conductivity and excellent mechanical properties. However, the poor chemical/electrochemical stability, narrow electrochemical windows, and limited adaptability to cathodes/anodes of SSSEs hinder the performance and application of SSSEs in ASSSBs. Consequently, a comprehensive understanding of the preparation methods, fundamental properties, modification techniques, and compatibility strategies between SSSEs and electrodes is crucial for the advancement of SSSE-based ASSSBs. This review summarizes the SSSEs based on their compositional makeup and crystal structure, aiming to elucidate the Na<sup>+</sup> conduction mechanisms. It also provides an overview of modification strategies designed to enhance ionic conductivity, chemical/electrochemical stability, and interfacial compatibility with electrodes. Furthermore, we outline the challenges and strategies related to the interfaces of SSSEs with cathodes/anodes. Finally, we discuss the existing challenges facing SSSEs and propose the future research directions for SSSE-based ASSSBs.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4mh01218f\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01218f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Sulfide electrolytes for all-solid-state sodium batteries: fundamentals and modification strategies.
Sulfide solid-state electrolytes (SSSEs) have garnered overwhelming attention as promising candidates for high-energy-density all-solid-state sodium batteries (ASSSBs) due to their high room-temperature ionic conductivity and excellent mechanical properties. However, the poor chemical/electrochemical stability, narrow electrochemical windows, and limited adaptability to cathodes/anodes of SSSEs hinder the performance and application of SSSEs in ASSSBs. Consequently, a comprehensive understanding of the preparation methods, fundamental properties, modification techniques, and compatibility strategies between SSSEs and electrodes is crucial for the advancement of SSSE-based ASSSBs. This review summarizes the SSSEs based on their compositional makeup and crystal structure, aiming to elucidate the Na+ conduction mechanisms. It also provides an overview of modification strategies designed to enhance ionic conductivity, chemical/electrochemical stability, and interfacial compatibility with electrodes. Furthermore, we outline the challenges and strategies related to the interfaces of SSSEs with cathodes/anodes. Finally, we discuss the existing challenges facing SSSEs and propose the future research directions for SSSE-based ASSSBs.