Aladdin M Srour, Eman S Nossier, Najla A Altwaijry, Safeya M Mousa, Hanem M Awad, Heba S A Elzahabi
{"title":"作为潜在抗癌剂的新吡喃吡啶共轭物:设计、合成和计算研究。","authors":"Aladdin M Srour, Eman S Nossier, Najla A Altwaijry, Safeya M Mousa, Hanem M Awad, Heba S A Elzahabi","doi":"10.1080/17568919.2024.2431475","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>New pyrano[3,2-c]pyridine 4a-h, 5-8 and pyrano[2,3-d]pyrimidin 9a,b series were designed and chemically synthesized.</p><p><strong>Methodology: </strong>Using the standard drug doxorubicin, the novel chemical entities have been assessed in vitro as potential anticancer prospects on cell lines from liver, breast, colon, and lung cancer along with examining their inhibitory behaviors upon both EGFR and VEGFR-2 kinases.</p><p><strong>Results & conclusion: </strong>Compared to erlotinib (IC<sub>50</sub> = 0.18 µM), compounds 8a and 8b demonstrated the highest anticancer activity with IC<sub>50</sub> Values 0.23 and 0.15 µM, respectively). Further, derivative 8a illustrated encouraging inhibitory characteristics against EGFR and VEGFR-2 (IC<sub>50</sub> = 1.21 and 2.65 μM, respectively). A computational study was used to estimate the physicochemical and pharmacokinetic properties to afford insightful information about the newly synthesized agents.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"2567-2582"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734389/pdf/","citationCount":"0","resultStr":"{\"title\":\"New pyrano-pyridine conjugates as potential anticancer agents: design, synthesis and computational studies.\",\"authors\":\"Aladdin M Srour, Eman S Nossier, Najla A Altwaijry, Safeya M Mousa, Hanem M Awad, Heba S A Elzahabi\",\"doi\":\"10.1080/17568919.2024.2431475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aim: </strong>New pyrano[3,2-c]pyridine 4a-h, 5-8 and pyrano[2,3-d]pyrimidin 9a,b series were designed and chemically synthesized.</p><p><strong>Methodology: </strong>Using the standard drug doxorubicin, the novel chemical entities have been assessed in vitro as potential anticancer prospects on cell lines from liver, breast, colon, and lung cancer along with examining their inhibitory behaviors upon both EGFR and VEGFR-2 kinases.</p><p><strong>Results & conclusion: </strong>Compared to erlotinib (IC<sub>50</sub> = 0.18 µM), compounds 8a and 8b demonstrated the highest anticancer activity with IC<sub>50</sub> Values 0.23 and 0.15 µM, respectively). Further, derivative 8a illustrated encouraging inhibitory characteristics against EGFR and VEGFR-2 (IC<sub>50</sub> = 1.21 and 2.65 μM, respectively). A computational study was used to estimate the physicochemical and pharmacokinetic properties to afford insightful information about the newly synthesized agents.</p>\",\"PeriodicalId\":12475,\"journal\":{\"name\":\"Future medicinal chemistry\",\"volume\":\" \",\"pages\":\"2567-2582\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734389/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17568919.2024.2431475\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17568919.2024.2431475","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
New pyrano-pyridine conjugates as potential anticancer agents: design, synthesis and computational studies.
Aim: New pyrano[3,2-c]pyridine 4a-h, 5-8 and pyrano[2,3-d]pyrimidin 9a,b series were designed and chemically synthesized.
Methodology: Using the standard drug doxorubicin, the novel chemical entities have been assessed in vitro as potential anticancer prospects on cell lines from liver, breast, colon, and lung cancer along with examining their inhibitory behaviors upon both EGFR and VEGFR-2 kinases.
Results & conclusion: Compared to erlotinib (IC50 = 0.18 µM), compounds 8a and 8b demonstrated the highest anticancer activity with IC50 Values 0.23 and 0.15 µM, respectively). Further, derivative 8a illustrated encouraging inhibitory characteristics against EGFR and VEGFR-2 (IC50 = 1.21 and 2.65 μM, respectively). A computational study was used to estimate the physicochemical and pharmacokinetic properties to afford insightful information about the newly synthesized agents.
期刊介绍:
Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.