Insun Song, Pil-Jong Kim, Yong Jun Choi, Yoon-Sok Chung, Soonchul Lee, Jeong-Hwa Baek, Kyung Mi Woo
{"title":"探索衰老骨细胞与年轻啮齿动物骨重塑之间的相互作用","authors":"Insun Song, Pil-Jong Kim, Yong Jun Choi, Yoon-Sok Chung, Soonchul Lee, Jeong-Hwa Baek, Kyung Mi Woo","doi":"10.1155/2024/4213141","DOIUrl":null,"url":null,"abstract":"<p><p>This study identifies senescent osteocytes in the femur and tibia of young rodents and explores their role in bone remodeling. The proximity of osteoclasts to senescent osteocytes was observed, which is a new finding. Cultured osteocytes, sorted using a podoplanin antibody in FACS, exhibited osteocytic characteristics and increased senescence-related genes. Senescent osteocytes secreted cytokines associated with senescence, remodeling, and inflammation. Notably, IGF1 and MMP2 were elevated in podoplanin-positive (pdpn<sup>+</sup>) osteocytes. Migration assays demonstrated significant osteoclast precursor migration towards senescent osteocytes, further confirmed by co-culture experiments leading to osteoclast differentiation. These findings suggest that senescent osteocytes have a pivotal role in initiating bone resorption, with recruitment of osteoclast precursors during early bone remodeling stages. In conclusion, our research enhances our understanding of complicated bone remodeling mechanisms and bone homeostasis.</p>","PeriodicalId":14933,"journal":{"name":"Journal of Aging Research","volume":"2024 ","pages":"4213141"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585373/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exploring the Interplay Between Senescent Osteocytes and Bone Remodeling in Young Rodents.\",\"authors\":\"Insun Song, Pil-Jong Kim, Yong Jun Choi, Yoon-Sok Chung, Soonchul Lee, Jeong-Hwa Baek, Kyung Mi Woo\",\"doi\":\"10.1155/2024/4213141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study identifies senescent osteocytes in the femur and tibia of young rodents and explores their role in bone remodeling. The proximity of osteoclasts to senescent osteocytes was observed, which is a new finding. Cultured osteocytes, sorted using a podoplanin antibody in FACS, exhibited osteocytic characteristics and increased senescence-related genes. Senescent osteocytes secreted cytokines associated with senescence, remodeling, and inflammation. Notably, IGF1 and MMP2 were elevated in podoplanin-positive (pdpn<sup>+</sup>) osteocytes. Migration assays demonstrated significant osteoclast precursor migration towards senescent osteocytes, further confirmed by co-culture experiments leading to osteoclast differentiation. These findings suggest that senescent osteocytes have a pivotal role in initiating bone resorption, with recruitment of osteoclast precursors during early bone remodeling stages. In conclusion, our research enhances our understanding of complicated bone remodeling mechanisms and bone homeostasis.</p>\",\"PeriodicalId\":14933,\"journal\":{\"name\":\"Journal of Aging Research\",\"volume\":\"2024 \",\"pages\":\"4213141\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585373/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aging Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/4213141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aging Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/4213141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
Exploring the Interplay Between Senescent Osteocytes and Bone Remodeling in Young Rodents.
This study identifies senescent osteocytes in the femur and tibia of young rodents and explores their role in bone remodeling. The proximity of osteoclasts to senescent osteocytes was observed, which is a new finding. Cultured osteocytes, sorted using a podoplanin antibody in FACS, exhibited osteocytic characteristics and increased senescence-related genes. Senescent osteocytes secreted cytokines associated with senescence, remodeling, and inflammation. Notably, IGF1 and MMP2 were elevated in podoplanin-positive (pdpn+) osteocytes. Migration assays demonstrated significant osteoclast precursor migration towards senescent osteocytes, further confirmed by co-culture experiments leading to osteoclast differentiation. These findings suggest that senescent osteocytes have a pivotal role in initiating bone resorption, with recruitment of osteoclast precursors during early bone remodeling stages. In conclusion, our research enhances our understanding of complicated bone remodeling mechanisms and bone homeostasis.