{"title":"通过机器学习和统计方法革新心血管疾病分类。","authors":"Tapan Kumar Behera, Siddhartha Sathia, Sibarama Panigrahi, Pradeep Kumar Naik","doi":"10.1080/10543406.2024.2429524","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cardiovascular diseases (CVDs) include abnormal conditions of the heart, diseased blood vessels, structural problems of the heart, and blood clots. Traditionally, CVD has been diagnosed by clinical experts, physicians, and medical specialists, which is expensive, time-consuming, and requires expert intervention. On the other hand, cost-effective digital diagnosis of CVD is now possible because of the emergence of machine learning (ML) and statistical techniques.</p><p><strong>Method: </strong>In this research, extensive studies were carried out to classify CVD via 19 promising ML models. To evaluate the performance and rank the ML models for CVD classification, two benchmark CVD datasets are considered from well-known sources, such as Kaggle and the UCI repository. The results are analysed considering individual datasets and their combination to assess the efficiency and reliability of ML models on the basis of various performance measures, such as precision, kappa, accuracy, recall, and the F1 score. Since some of the ML models are stochastic, we repeated the simulation 50 times for each dataset using each model and applied nonparametric statistical tests to draw decisive conclusions.</p><p><strong>Results: </strong>The nonparametric Friedman - Nemenyi hypothesis test suggests that the Extra Tree Classifier provides statistically superior accuracy and precision compared with all other models. However, the Extreme Gradient Boost (XGBoost) classifier provides statistically superior recall, kappa, and F1 scores compared with those of all the other models. Additionally, the XGBRF classifier achieves a statistically second-best rank in terms of the recall measures.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-23"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revolutionizing cardiovascular disease classification through machine learning and statistical methods.\",\"authors\":\"Tapan Kumar Behera, Siddhartha Sathia, Sibarama Panigrahi, Pradeep Kumar Naik\",\"doi\":\"10.1080/10543406.2024.2429524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cardiovascular diseases (CVDs) include abnormal conditions of the heart, diseased blood vessels, structural problems of the heart, and blood clots. Traditionally, CVD has been diagnosed by clinical experts, physicians, and medical specialists, which is expensive, time-consuming, and requires expert intervention. On the other hand, cost-effective digital diagnosis of CVD is now possible because of the emergence of machine learning (ML) and statistical techniques.</p><p><strong>Method: </strong>In this research, extensive studies were carried out to classify CVD via 19 promising ML models. To evaluate the performance and rank the ML models for CVD classification, two benchmark CVD datasets are considered from well-known sources, such as Kaggle and the UCI repository. The results are analysed considering individual datasets and their combination to assess the efficiency and reliability of ML models on the basis of various performance measures, such as precision, kappa, accuracy, recall, and the F1 score. Since some of the ML models are stochastic, we repeated the simulation 50 times for each dataset using each model and applied nonparametric statistical tests to draw decisive conclusions.</p><p><strong>Results: </strong>The nonparametric Friedman - Nemenyi hypothesis test suggests that the Extra Tree Classifier provides statistically superior accuracy and precision compared with all other models. However, the Extreme Gradient Boost (XGBoost) classifier provides statistically superior recall, kappa, and F1 scores compared with those of all the other models. Additionally, the XGBRF classifier achieves a statistically second-best rank in terms of the recall measures.</p>\",\"PeriodicalId\":54870,\"journal\":{\"name\":\"Journal of Biopharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"1-23\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biopharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10543406.2024.2429524\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2024.2429524","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
摘要
背景:心血管疾病(CVD)包括心脏异常、血管病变、心脏结构问题和血栓。传统上,心血管疾病一直由临床专家、内科医生和医学专家进行诊断,这不仅昂贵、耗时,而且需要专家的干预。另一方面,由于机器学习(ML)和统计技术的出现,现在可以对心血管疾病进行经济高效的数字化诊断:本研究通过 19 种有前途的 ML 模型对心血管疾病进行了广泛的分类研究。为了评估用于心血管疾病分类的 ML 模型的性能并对其进行排序,考虑了两个基准心血管疾病数据集,这些数据集来自 Kaggle 和 UCI 资料库等知名来源。分析结果既考虑了单个数据集,也考虑了它们的组合,从而根据各种性能指标(如精确度、卡帕值、准确度、召回率和 F1 分数)来评估 ML 模型的效率和可靠性。由于一些 ML 模型是随机的,我们对每个数据集使用每个模型重复模拟 50 次,并应用非参数统计检验得出决定性结论:非参数 Friedman - Nemenyi 假设检验表明,与所有其他模型相比,Extra Tree 分类器的准确率和精确度在统计学上更胜一筹。然而,与所有其他模型相比,极端梯度提升(XGBoost)分类器在召回率、卡帕和 F1 分数上都具有统计学优势。此外,XGBRF 分类器的召回率在统计上排名第二。
Revolutionizing cardiovascular disease classification through machine learning and statistical methods.
Background: Cardiovascular diseases (CVDs) include abnormal conditions of the heart, diseased blood vessels, structural problems of the heart, and blood clots. Traditionally, CVD has been diagnosed by clinical experts, physicians, and medical specialists, which is expensive, time-consuming, and requires expert intervention. On the other hand, cost-effective digital diagnosis of CVD is now possible because of the emergence of machine learning (ML) and statistical techniques.
Method: In this research, extensive studies were carried out to classify CVD via 19 promising ML models. To evaluate the performance and rank the ML models for CVD classification, two benchmark CVD datasets are considered from well-known sources, such as Kaggle and the UCI repository. The results are analysed considering individual datasets and their combination to assess the efficiency and reliability of ML models on the basis of various performance measures, such as precision, kappa, accuracy, recall, and the F1 score. Since some of the ML models are stochastic, we repeated the simulation 50 times for each dataset using each model and applied nonparametric statistical tests to draw decisive conclusions.
Results: The nonparametric Friedman - Nemenyi hypothesis test suggests that the Extra Tree Classifier provides statistically superior accuracy and precision compared with all other models. However, the Extreme Gradient Boost (XGBoost) classifier provides statistically superior recall, kappa, and F1 scores compared with those of all the other models. Additionally, the XGBRF classifier achieves a statistically second-best rank in terms of the recall measures.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.