利用核桃体细胞胚胎作为重组蛋白质和代谢物的生物制造平台。

IF 2.7 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY BioTech Pub Date : 2024-11-15 DOI:10.3390/biotech13040050
Paulo A Zaini, Katherine R Haddad, Noah G Feinberg, Yakir Ophir, Somen Nandi, Karen A McDonald, Abhaya M Dandekar
{"title":"利用核桃体细胞胚胎作为重组蛋白质和代谢物的生物制造平台。","authors":"Paulo A Zaini, Katherine R Haddad, Noah G Feinberg, Yakir Ophir, Somen Nandi, Karen A McDonald, Abhaya M Dandekar","doi":"10.3390/biotech13040050","DOIUrl":null,"url":null,"abstract":"<p><p>Biomanufacturing enables novel sources of compounds with constant demand, such as food coloring and preservatives, as well as new compounds with peak demand, such as diagnostics and vaccines. The COVID-19 pandemic has highlighted the need for alternative sources of research materials, thrusting research on diversification of biomanufacturing platforms. Here, we show initial results exploring the walnut somatic embryogenic system expressing the recombinant receptor binding domain (RBD) and ectodomain of the spike protein (Spike) from the SARS-CoV-2 virus. Stably transformed walnut embryo lines were selected and propagated in vitro. Both recombinant proteins were detected at 3-14 µg/g dry weight of tissue culture material. Although higher yields of recombinant protein have been obtained using more conventional biomanufacturing platforms, we also report on the production of the red pigment betanin in somatic embryos, reaching yields of 650 mg/g, even higher than red beet <i>Beta vulgaris</i>. This first iteration shows the potential of biomanufacturing using somatic walnut embryos that can now be further optimized for different applications sourcing specialized proteins and metabolites.</p>","PeriodicalId":34490,"journal":{"name":"BioTech","volume":"13 4","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging Walnut Somatic Embryos as a Biomanufacturing Platform for Recombinant Proteins and Metabolites.\",\"authors\":\"Paulo A Zaini, Katherine R Haddad, Noah G Feinberg, Yakir Ophir, Somen Nandi, Karen A McDonald, Abhaya M Dandekar\",\"doi\":\"10.3390/biotech13040050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biomanufacturing enables novel sources of compounds with constant demand, such as food coloring and preservatives, as well as new compounds with peak demand, such as diagnostics and vaccines. The COVID-19 pandemic has highlighted the need for alternative sources of research materials, thrusting research on diversification of biomanufacturing platforms. Here, we show initial results exploring the walnut somatic embryogenic system expressing the recombinant receptor binding domain (RBD) and ectodomain of the spike protein (Spike) from the SARS-CoV-2 virus. Stably transformed walnut embryo lines were selected and propagated in vitro. Both recombinant proteins were detected at 3-14 µg/g dry weight of tissue culture material. Although higher yields of recombinant protein have been obtained using more conventional biomanufacturing platforms, we also report on the production of the red pigment betanin in somatic embryos, reaching yields of 650 mg/g, even higher than red beet <i>Beta vulgaris</i>. This first iteration shows the potential of biomanufacturing using somatic walnut embryos that can now be further optimized for different applications sourcing specialized proteins and metabolites.</p>\",\"PeriodicalId\":34490,\"journal\":{\"name\":\"BioTech\",\"volume\":\"13 4\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioTech\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/biotech13040050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioTech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biotech13040050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

生物制造可以为食品着色剂和防腐剂等需求量大的化合物提供新的来源,也可以为诊断和疫苗等需求量大的新化合物提供新的来源。COVID-19 大流行凸显了对替代研究材料来源的需求,推动了生物制造平台多样化的研究。在此,我们展示了探索表达重组 SARS-CoV-2 病毒受体结合域(RBD)和尖峰蛋白(Spike)外显子域的核桃体细胞胚胎系统的初步结果。筛选出稳定转化的核桃胚系并进行体外繁殖。在组织培养材料干重为 3-14 µg/g 时,均可检测到这两种重组蛋白。虽然使用更传统的生物制造平台可以获得更高的重组蛋白产量,但我们也报告了在体细胞胚胎中生产红色素 betanin 的情况,产量达到 650 毫克/克,甚至高于红甜菜 Beta vulgaris。第一次迭代显示了使用体细胞核桃胚胎进行生物制造的潜力,现在可以针对不同的应用进一步优化,以获得专门的蛋白质和代谢物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leveraging Walnut Somatic Embryos as a Biomanufacturing Platform for Recombinant Proteins and Metabolites.

Biomanufacturing enables novel sources of compounds with constant demand, such as food coloring and preservatives, as well as new compounds with peak demand, such as diagnostics and vaccines. The COVID-19 pandemic has highlighted the need for alternative sources of research materials, thrusting research on diversification of biomanufacturing platforms. Here, we show initial results exploring the walnut somatic embryogenic system expressing the recombinant receptor binding domain (RBD) and ectodomain of the spike protein (Spike) from the SARS-CoV-2 virus. Stably transformed walnut embryo lines were selected and propagated in vitro. Both recombinant proteins were detected at 3-14 µg/g dry weight of tissue culture material. Although higher yields of recombinant protein have been obtained using more conventional biomanufacturing platforms, we also report on the production of the red pigment betanin in somatic embryos, reaching yields of 650 mg/g, even higher than red beet Beta vulgaris. This first iteration shows the potential of biomanufacturing using somatic walnut embryos that can now be further optimized for different applications sourcing specialized proteins and metabolites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BioTech
BioTech Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
3.70
自引率
0.00%
发文量
51
审稿时长
11 weeks
期刊最新文献
The Biotechnological Potential of Crickets as a Sustainable Protein Source for Fishmeal Replacement in Aquafeed. Climate Resilience in Farm Animals: Transcriptomics-Based Alterations in Differentially Expressed Genes and Stress Pathways. Leveraging Walnut Somatic Embryos as a Biomanufacturing Platform for Recombinant Proteins and Metabolites. High-Resolution Melting Analysis Potential for Saccharomyces cerevisiae var. boulardii Authentication in Probiotic-Enriched Food Matrices. Honey Bioactive Molecules: There Is a World Beyond the Sugars.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1