{"title":"BOP2-TE:贝叶斯优化 2 期设计,用于联合监测疗效和毒性,并应用于剂量优化。","authors":"Kai Chen, Heng Zhou, J Jack Lee, Ying Yuan","doi":"10.1080/10543406.2024.2429481","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a Bayesian optimal phase 2 design for jointly monitoring efficacy and toxicity, referred to as BOP2-TE, to improve the operating characteristics of the BOP2 design proposed by Zhou. BOP2-TE utilizes a Dirichlet-multinomial model to jointly model the distribution of toxicity and efficacy endpoints, making go/no-go decisions based on the posterior probability of toxicity and futility. In comparison to the original BOP2 and other existing designs, BOP2-TE offers the advantage of providing rigorous type I error control in cases where the treatment is toxic and futile, effective but toxic, or safe but futile, while optimizing power when the treatment is effective and safe. As a result, BOP2-TE enhances trial safety and efficacy. We also explore the incorporation of BOP2-TE into multiple-dose randomized trials for dose optimization, and consider a seamless design that integrates phase I dose finding with phase II randomized dose optimization. BOP2-TE is user-friendly, as its decision boundary can be determined prior to the trial's onset. Simulations demonstrate that BOP2-TE possesses desirable operating characteristics. We have developed a user-friendly web application as part of the BOP2 app, which is freely available at https://www.trialdesign.org.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-16"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BOP2-TE: Bayesian optimal phase 2 design for jointly monitoring efficacy and toxicity with application to dose optimization.\",\"authors\":\"Kai Chen, Heng Zhou, J Jack Lee, Ying Yuan\",\"doi\":\"10.1080/10543406.2024.2429481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a Bayesian optimal phase 2 design for jointly monitoring efficacy and toxicity, referred to as BOP2-TE, to improve the operating characteristics of the BOP2 design proposed by Zhou. BOP2-TE utilizes a Dirichlet-multinomial model to jointly model the distribution of toxicity and efficacy endpoints, making go/no-go decisions based on the posterior probability of toxicity and futility. In comparison to the original BOP2 and other existing designs, BOP2-TE offers the advantage of providing rigorous type I error control in cases where the treatment is toxic and futile, effective but toxic, or safe but futile, while optimizing power when the treatment is effective and safe. As a result, BOP2-TE enhances trial safety and efficacy. We also explore the incorporation of BOP2-TE into multiple-dose randomized trials for dose optimization, and consider a seamless design that integrates phase I dose finding with phase II randomized dose optimization. BOP2-TE is user-friendly, as its decision boundary can be determined prior to the trial's onset. Simulations demonstrate that BOP2-TE possesses desirable operating characteristics. We have developed a user-friendly web application as part of the BOP2 app, which is freely available at https://www.trialdesign.org.</p>\",\"PeriodicalId\":54870,\"journal\":{\"name\":\"Journal of Biopharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"1-16\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biopharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10543406.2024.2429481\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2024.2429481","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
摘要
我们提出了一种联合监测疗效和毒性的贝叶斯最优 2 期设计(简称 BOP2-TE),以改进 Zhou 提出的 BOP2 设计的操作特性。BOP2-TE 利用 Dirichlet-Multinomial 模型对毒性终点和疗效终点的分布进行联合建模,根据毒性和无效的后验概率做出去/不去的决定。与最初的 BOP2 和其他现有设计相比,BOP2-TE 的优势在于在治疗有毒但无用、有效但有毒或安全但无用的情况下提供严格的 I 型误差控制,同时在治疗有效且安全的情况下优化功率。因此,BOP2-TE 提高了试验的安全性和有效性。我们还探讨了将 BOP2-TE 纳入多剂量随机试验以优化剂量的问题,并考虑了将 I 期剂量发现与 II 期随机剂量优化相结合的无缝设计。BOP2-TE 易于使用,因为其决策边界可在试验开始前确定。模拟结果表明,BOP2-TE 具有理想的运行特性。我们开发了一个用户友好型网络应用程序,作为 BOP2 应用程序的一部分,可在 https://www.trialdesign.org 免费获取。
BOP2-TE: Bayesian optimal phase 2 design for jointly monitoring efficacy and toxicity with application to dose optimization.
We propose a Bayesian optimal phase 2 design for jointly monitoring efficacy and toxicity, referred to as BOP2-TE, to improve the operating characteristics of the BOP2 design proposed by Zhou. BOP2-TE utilizes a Dirichlet-multinomial model to jointly model the distribution of toxicity and efficacy endpoints, making go/no-go decisions based on the posterior probability of toxicity and futility. In comparison to the original BOP2 and other existing designs, BOP2-TE offers the advantage of providing rigorous type I error control in cases where the treatment is toxic and futile, effective but toxic, or safe but futile, while optimizing power when the treatment is effective and safe. As a result, BOP2-TE enhances trial safety and efficacy. We also explore the incorporation of BOP2-TE into multiple-dose randomized trials for dose optimization, and consider a seamless design that integrates phase I dose finding with phase II randomized dose optimization. BOP2-TE is user-friendly, as its decision boundary can be determined prior to the trial's onset. Simulations demonstrate that BOP2-TE possesses desirable operating characteristics. We have developed a user-friendly web application as part of the BOP2 app, which is freely available at https://www.trialdesign.org.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.