文化大数据:从十九世纪到二十一世纪的全景可视化。

IF 2.4 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Frontiers in Big Data Pub Date : 2024-11-08 eCollection Date: 2024-01-01 DOI:10.3389/fdata.2024.1309887
Tsz Kin Chau, Paul Bourke, Lily Hibberd, Daniel Jaquet, Sarah Kenderdine
{"title":"文化大数据:从十九世纪到二十一世纪的全景可视化。","authors":"Tsz Kin Chau, Paul Bourke, Lily Hibberd, Daniel Jaquet, Sarah Kenderdine","doi":"10.3389/fdata.2024.1309887","DOIUrl":null,"url":null,"abstract":"<p><p>From the nineteenth-century panorama to the emergence of the digital panoramic format in the 1990's, the visualization of large images frequently relies on panoramic viewing strategies. Originally rendered in the form of epic painted canvases, these strategies are now amplified through gigapixel imaging, computer vision and machine learning. Whether for scientific analysis, dissemination, or to visualize cultural big data, panoramic strategies pivot on the illusion of immersion. The latter is achieved through human-centered design situated within a large-scale environment combined with a multi-sensory experience spanning sight, sound, touch, and smell. In this article, we present the original research undertaken to realize a digital twin of the 1894 panorama of the battle of Murten. Following a brief history of the panorama, the methods and technological framework systems developed for Murten panorama's visualization are delineated. Novel visualization methodologies are further discussed, including how to create the illusion of immersion for the world's largest image of a single physical object and its cultural big data. We also present the visualization strategies developed for the augmentation of the layered narratives and histories embedded in the final interactive viewing experience of the Murten panorama. This article offers researchers in heritage big data new schemas for the visualization and augmentation of gigapixel images in digital panoramas.</p>","PeriodicalId":52859,"journal":{"name":"Frontiers in Big Data","volume":"7 ","pages":"1309887"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581890/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cultural big data: nineteenth to twenty-first century panoramic visualization.\",\"authors\":\"Tsz Kin Chau, Paul Bourke, Lily Hibberd, Daniel Jaquet, Sarah Kenderdine\",\"doi\":\"10.3389/fdata.2024.1309887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>From the nineteenth-century panorama to the emergence of the digital panoramic format in the 1990's, the visualization of large images frequently relies on panoramic viewing strategies. Originally rendered in the form of epic painted canvases, these strategies are now amplified through gigapixel imaging, computer vision and machine learning. Whether for scientific analysis, dissemination, or to visualize cultural big data, panoramic strategies pivot on the illusion of immersion. The latter is achieved through human-centered design situated within a large-scale environment combined with a multi-sensory experience spanning sight, sound, touch, and smell. In this article, we present the original research undertaken to realize a digital twin of the 1894 panorama of the battle of Murten. Following a brief history of the panorama, the methods and technological framework systems developed for Murten panorama's visualization are delineated. Novel visualization methodologies are further discussed, including how to create the illusion of immersion for the world's largest image of a single physical object and its cultural big data. We also present the visualization strategies developed for the augmentation of the layered narratives and histories embedded in the final interactive viewing experience of the Murten panorama. This article offers researchers in heritage big data new schemas for the visualization and augmentation of gigapixel images in digital panoramas.</p>\",\"PeriodicalId\":52859,\"journal\":{\"name\":\"Frontiers in Big Data\",\"volume\":\"7 \",\"pages\":\"1309887\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581890/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Big Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fdata.2024.1309887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdata.2024.1309887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

从十九世纪的全景图到二十世纪九十年代出现的数字全景格式,大型图像的可视化经常依赖于全景观看策略。这些策略最初以史诗画布的形式呈现,现在则通过千兆像素成像、计算机视觉和机器学习得到了放大。无论是用于科学分析、传播,还是用于文化大数据的可视化,全景观看策略的核心都是让人产生身临其境的错觉。后者是通过以人为本的设计,在大尺度环境中结合视觉、听觉、触觉和嗅觉等多感官体验来实现的。在本文中,我们介绍了为实现 1894 年墨尔本战役全景图的数字孪生而进行的原创研究。在简要介绍了全景图的历史之后,阐述了为穆尔腾全景图可视化而开发的方法和技术框架系统。我们还进一步讨论了新颖的可视化方法,包括如何为世界上最大的单一实物图像及其文化大数据营造身临其境的错觉。我们还介绍了为增强墨尔本全景图最终交互式观看体验中蕴含的分层叙事和历史而开发的可视化策略。本文为遗产大数据研究人员提供了数字全景图中千兆像素图像的可视化和增强的新方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cultural big data: nineteenth to twenty-first century panoramic visualization.

From the nineteenth-century panorama to the emergence of the digital panoramic format in the 1990's, the visualization of large images frequently relies on panoramic viewing strategies. Originally rendered in the form of epic painted canvases, these strategies are now amplified through gigapixel imaging, computer vision and machine learning. Whether for scientific analysis, dissemination, or to visualize cultural big data, panoramic strategies pivot on the illusion of immersion. The latter is achieved through human-centered design situated within a large-scale environment combined with a multi-sensory experience spanning sight, sound, touch, and smell. In this article, we present the original research undertaken to realize a digital twin of the 1894 panorama of the battle of Murten. Following a brief history of the panorama, the methods and technological framework systems developed for Murten panorama's visualization are delineated. Novel visualization methodologies are further discussed, including how to create the illusion of immersion for the world's largest image of a single physical object and its cultural big data. We also present the visualization strategies developed for the augmentation of the layered narratives and histories embedded in the final interactive viewing experience of the Murten panorama. This article offers researchers in heritage big data new schemas for the visualization and augmentation of gigapixel images in digital panoramas.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
3.20%
发文量
122
审稿时长
13 weeks
期刊最新文献
How critical is SME financial literacy and digital financial access for financial and economic development in the expanded BRICS block? Leveraging compact convolutional transformers for enhanced COVID-19 detection in chest X-rays: a grad-CAM visualization approach. Predicting student self-efficacy in Muslim societies using machine learning algorithms. Application of a localized morphometrics approach to imaging-derived brain phenotypes for genotype-phenotype associations in pediatric mental health and neurodevelopmental disorders. Advancing cybersecurity and privacy with artificial intelligence: current trends and future research directions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1