L M N Aukema, A F de Geer, M J A van Alphen, W H Schreuder, R L P van Veen, T J M Ruers, F J Siepel, M B Karakullukcu
{"title":"下颌骨重建手术中电磁导航截骨术的腓骨混合注册:一项模型研究。","authors":"L M N Aukema, A F de Geer, M J A van Alphen, W H Schreuder, R L P van Veen, T J M Ruers, F J Siepel, M B Karakullukcu","doi":"10.1007/s11548-024-03282-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>In mandibular reconstructive surgery with free fibula flap, 3D-printed patient-specific cutting guides are the current state of the art. Although these guides enable accurate transfer of the virtual surgical plan to the operating room, disadvantages include long waiting times until surgery and the inability to change the virtual plan intraoperatively in case of tumor growth. Alternatively, (electromagnetic) surgical navigation combined with a non-patient-specific cutting guide could be used, requiring accurate image-to-patient registration. In this phantom study, we evaluated the accuracy of a hybrid registration method for the fibula and the additional error that is caused by navigating with a prototype of a novel non-patient-specific cutting guide to virtually planned osteotomy planes.</p><p><strong>Methods: </strong>The accuracy of hybrid registration and navigation was assessed in terms of target registration error (TRE), angular difference, and length difference of the intended fibula segments using three 3D-printed fibular phantoms with assessment points on osteotomy planes. Using electromagnetic tracking, hybrid registration was performed with point registration followed by surface registration on the lateral fibular surface. The fibula was fixated in the non-patient-specific cutting guide to navigate to planned osteotomy planes after which the accuracy was assessed.</p><p><strong>Results: </strong>Registration was achieved with a mean TRE, angular difference, and segment length difference of 2.3 ± 0.9 mm, 2.1 ± 1.4°, and 0.3 ± 0.3 mm respectively after hybrid registration. Navigation with the novel cutting guide increased the length difference (0.7 ± 0.6 mm), but decreased the angular difference (1.8 ± 1.3°).</p><p><strong>Conclusion: </strong>Hybrid registration showed to be a feasible and noninvasive method to register the fibula in phantom setup and could be used for electromagnetically navigated osteotomies with a novel non-patient-specific cutting guide. Future studies should focus on testing this registration method in clinical setting.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid registration of the fibula for electromagnetically navigated osteotomies in mandibular reconstructive surgery: a phantom study.\",\"authors\":\"L M N Aukema, A F de Geer, M J A van Alphen, W H Schreuder, R L P van Veen, T J M Ruers, F J Siepel, M B Karakullukcu\",\"doi\":\"10.1007/s11548-024-03282-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>In mandibular reconstructive surgery with free fibula flap, 3D-printed patient-specific cutting guides are the current state of the art. Although these guides enable accurate transfer of the virtual surgical plan to the operating room, disadvantages include long waiting times until surgery and the inability to change the virtual plan intraoperatively in case of tumor growth. Alternatively, (electromagnetic) surgical navigation combined with a non-patient-specific cutting guide could be used, requiring accurate image-to-patient registration. In this phantom study, we evaluated the accuracy of a hybrid registration method for the fibula and the additional error that is caused by navigating with a prototype of a novel non-patient-specific cutting guide to virtually planned osteotomy planes.</p><p><strong>Methods: </strong>The accuracy of hybrid registration and navigation was assessed in terms of target registration error (TRE), angular difference, and length difference of the intended fibula segments using three 3D-printed fibular phantoms with assessment points on osteotomy planes. Using electromagnetic tracking, hybrid registration was performed with point registration followed by surface registration on the lateral fibular surface. The fibula was fixated in the non-patient-specific cutting guide to navigate to planned osteotomy planes after which the accuracy was assessed.</p><p><strong>Results: </strong>Registration was achieved with a mean TRE, angular difference, and segment length difference of 2.3 ± 0.9 mm, 2.1 ± 1.4°, and 0.3 ± 0.3 mm respectively after hybrid registration. Navigation with the novel cutting guide increased the length difference (0.7 ± 0.6 mm), but decreased the angular difference (1.8 ± 1.3°).</p><p><strong>Conclusion: </strong>Hybrid registration showed to be a feasible and noninvasive method to register the fibula in phantom setup and could be used for electromagnetically navigated osteotomies with a novel non-patient-specific cutting guide. Future studies should focus on testing this registration method in clinical setting.</p>\",\"PeriodicalId\":51251,\"journal\":{\"name\":\"International Journal of Computer Assisted Radiology and Surgery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Assisted Radiology and Surgery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11548-024-03282-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-024-03282-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Hybrid registration of the fibula for electromagnetically navigated osteotomies in mandibular reconstructive surgery: a phantom study.
Purpose: In mandibular reconstructive surgery with free fibula flap, 3D-printed patient-specific cutting guides are the current state of the art. Although these guides enable accurate transfer of the virtual surgical plan to the operating room, disadvantages include long waiting times until surgery and the inability to change the virtual plan intraoperatively in case of tumor growth. Alternatively, (electromagnetic) surgical navigation combined with a non-patient-specific cutting guide could be used, requiring accurate image-to-patient registration. In this phantom study, we evaluated the accuracy of a hybrid registration method for the fibula and the additional error that is caused by navigating with a prototype of a novel non-patient-specific cutting guide to virtually planned osteotomy planes.
Methods: The accuracy of hybrid registration and navigation was assessed in terms of target registration error (TRE), angular difference, and length difference of the intended fibula segments using three 3D-printed fibular phantoms with assessment points on osteotomy planes. Using electromagnetic tracking, hybrid registration was performed with point registration followed by surface registration on the lateral fibular surface. The fibula was fixated in the non-patient-specific cutting guide to navigate to planned osteotomy planes after which the accuracy was assessed.
Results: Registration was achieved with a mean TRE, angular difference, and segment length difference of 2.3 ± 0.9 mm, 2.1 ± 1.4°, and 0.3 ± 0.3 mm respectively after hybrid registration. Navigation with the novel cutting guide increased the length difference (0.7 ± 0.6 mm), but decreased the angular difference (1.8 ± 1.3°).
Conclusion: Hybrid registration showed to be a feasible and noninvasive method to register the fibula in phantom setup and could be used for electromagnetically navigated osteotomies with a novel non-patient-specific cutting guide. Future studies should focus on testing this registration method in clinical setting.
期刊介绍:
The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.