{"title":"作为大脑模型的概念-价值网络","authors":"Kieran Greer","doi":"10.3390/neurosci5040039","DOIUrl":null,"url":null,"abstract":"<p><p>This paper suggests a statistical framework for describing the relations between the physical and conceptual entities of a brain-like model. Features and concept instances are put into context, where the paper suggests that features may be the electrical wiring; although, chemical connections are also possible. With this idea, the actual length of the connection is important, because it is related to firing rates and neuron synchronization, but the signal type is less important. The paper then suggests that concepts are neuron groups that link feature sets and concept instances are determined by chemical signals from those groups. Therefore, features become the static horizontal framework of the neural system and concepts are vertically interconnected combinations of these. With regards to functionality, the neuron is then considered to be functional, and the more horizontal memory structures can even be glial. This would also suggest that features can be distributed entities and not concentrated to a single area. Another aspect could be signal 'breaks' that compartmentalise a pattern and may help with neural binding.</p>","PeriodicalId":74294,"journal":{"name":"NeuroSci","volume":"5 4","pages":"534-541"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587426/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Concept-Value Network as a Brain Model.\",\"authors\":\"Kieran Greer\",\"doi\":\"10.3390/neurosci5040039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper suggests a statistical framework for describing the relations between the physical and conceptual entities of a brain-like model. Features and concept instances are put into context, where the paper suggests that features may be the electrical wiring; although, chemical connections are also possible. With this idea, the actual length of the connection is important, because it is related to firing rates and neuron synchronization, but the signal type is less important. The paper then suggests that concepts are neuron groups that link feature sets and concept instances are determined by chemical signals from those groups. Therefore, features become the static horizontal framework of the neural system and concepts are vertically interconnected combinations of these. With regards to functionality, the neuron is then considered to be functional, and the more horizontal memory structures can even be glial. This would also suggest that features can be distributed entities and not concentrated to a single area. Another aspect could be signal 'breaks' that compartmentalise a pattern and may help with neural binding.</p>\",\"PeriodicalId\":74294,\"journal\":{\"name\":\"NeuroSci\",\"volume\":\"5 4\",\"pages\":\"534-541\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587426/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroSci\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/neurosci5040039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroSci","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/neurosci5040039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
This paper suggests a statistical framework for describing the relations between the physical and conceptual entities of a brain-like model. Features and concept instances are put into context, where the paper suggests that features may be the electrical wiring; although, chemical connections are also possible. With this idea, the actual length of the connection is important, because it is related to firing rates and neuron synchronization, but the signal type is less important. The paper then suggests that concepts are neuron groups that link feature sets and concept instances are determined by chemical signals from those groups. Therefore, features become the static horizontal framework of the neural system and concepts are vertically interconnected combinations of these. With regards to functionality, the neuron is then considered to be functional, and the more horizontal memory structures can even be glial. This would also suggest that features can be distributed entities and not concentrated to a single area. Another aspect could be signal 'breaks' that compartmentalise a pattern and may help with neural binding.