Sun Jialin, Gao Qun, Li Hong, Feng Yixing, Yang Runhui, Liu Yuehan, Ren Jiale, Sang Chenhui, Zhao Bingli, Niu Yumin, Shao Bing
{"title":"北京母婴人群尿液中双酚 S 衍生物及其暴露途径分析","authors":"Sun Jialin, Gao Qun, Li Hong, Feng Yixing, Yang Runhui, Liu Yuehan, Ren Jiale, Sang Chenhui, Zhao Bingli, Niu Yumin, Shao Bing","doi":"10.1016/j.envint.2024.109169","DOIUrl":null,"url":null,"abstract":"Bisphenol S (BPS) derivatives have potential reproductive developmental toxicity and have been found in the environment and in breast milk. The level of infant exposure and the source are currently unknown. In this study, we investigated BPS and six derivatives (together referred to as BPs) in urine samples from mothers and infants, indoor dust, breast milk and infant formula in Beijing, China. BPS, diphenyl sulfone (DPS) and 4-allyloxy-4′-hydroxydiphenyl sulfone (BPS-MAE) were the main BPs. Notably, the concentration of DPS in infants’ urine was higher than that of BPS, which warrants attention. Infants have higher daily intake levels than mothers. Exclusively breastfed infants have a higher risk of BPs exposure than exclusively formula-fed infants. For exclusive breastfed infants, the contribution of individual BPs through breast milk was 23.2% to 93.6%. While for exclusively formula-fed infants, the contribution of individual BPs through infant formula was 30.5% to 70.3%. The contribution of individual BPs through indoor dust was no more than 10%. The results suggesting that infants can be exposed to BPs through other pathways. This is the first comprehensive assessment of maternal and infants exposure to BPS derivatives, providing insights into the sources of infant exposure.","PeriodicalId":308,"journal":{"name":"Environment International","volume":"12 1","pages":""},"PeriodicalIF":10.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Urinary profiles of bisphenol S derivatives and their exposure pathway analysis in maternal and infant populations of Beijing\",\"authors\":\"Sun Jialin, Gao Qun, Li Hong, Feng Yixing, Yang Runhui, Liu Yuehan, Ren Jiale, Sang Chenhui, Zhao Bingli, Niu Yumin, Shao Bing\",\"doi\":\"10.1016/j.envint.2024.109169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bisphenol S (BPS) derivatives have potential reproductive developmental toxicity and have been found in the environment and in breast milk. The level of infant exposure and the source are currently unknown. In this study, we investigated BPS and six derivatives (together referred to as BPs) in urine samples from mothers and infants, indoor dust, breast milk and infant formula in Beijing, China. BPS, diphenyl sulfone (DPS) and 4-allyloxy-4′-hydroxydiphenyl sulfone (BPS-MAE) were the main BPs. Notably, the concentration of DPS in infants’ urine was higher than that of BPS, which warrants attention. Infants have higher daily intake levels than mothers. Exclusively breastfed infants have a higher risk of BPs exposure than exclusively formula-fed infants. For exclusive breastfed infants, the contribution of individual BPs through breast milk was 23.2% to 93.6%. While for exclusively formula-fed infants, the contribution of individual BPs through infant formula was 30.5% to 70.3%. The contribution of individual BPs through indoor dust was no more than 10%. The results suggesting that infants can be exposed to BPs through other pathways. This is the first comprehensive assessment of maternal and infants exposure to BPS derivatives, providing insights into the sources of infant exposure.\",\"PeriodicalId\":308,\"journal\":{\"name\":\"Environment International\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":10.3000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environment International\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.envint.2024.109169\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment International","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envint.2024.109169","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Urinary profiles of bisphenol S derivatives and their exposure pathway analysis in maternal and infant populations of Beijing
Bisphenol S (BPS) derivatives have potential reproductive developmental toxicity and have been found in the environment and in breast milk. The level of infant exposure and the source are currently unknown. In this study, we investigated BPS and six derivatives (together referred to as BPs) in urine samples from mothers and infants, indoor dust, breast milk and infant formula in Beijing, China. BPS, diphenyl sulfone (DPS) and 4-allyloxy-4′-hydroxydiphenyl sulfone (BPS-MAE) were the main BPs. Notably, the concentration of DPS in infants’ urine was higher than that of BPS, which warrants attention. Infants have higher daily intake levels than mothers. Exclusively breastfed infants have a higher risk of BPs exposure than exclusively formula-fed infants. For exclusive breastfed infants, the contribution of individual BPs through breast milk was 23.2% to 93.6%. While for exclusively formula-fed infants, the contribution of individual BPs through infant formula was 30.5% to 70.3%. The contribution of individual BPs through indoor dust was no more than 10%. The results suggesting that infants can be exposed to BPs through other pathways. This is the first comprehensive assessment of maternal and infants exposure to BPS derivatives, providing insights into the sources of infant exposure.
期刊介绍:
Environmental Health publishes manuscripts focusing on critical aspects of environmental and occupational medicine, including studies in toxicology and epidemiology, to illuminate the human health implications of exposure to environmental hazards. The journal adopts an open-access model and practices open peer review.
It caters to scientists and practitioners across all environmental science domains, directly or indirectly impacting human health and well-being. With a commitment to enhancing the prevention of environmentally-related health risks, Environmental Health serves as a public health journal for the community and scientists engaged in matters of public health significance concerning the environment.