利用钛酸钠阳极共钙化存储机制和稳定的固体电解质界面实现低温快速界面动力学

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-11-26 DOI:10.1002/adfm.202417725
Jiaming Zhu, Xiaofeng Yan, Yuhang Jiang, Yingying Li, Gang Wang, Yuan Xia, Hui Wang, Beibei Wang
{"title":"利用钛酸钠阳极共钙化存储机制和稳定的固体电解质界面实现低温快速界面动力学","authors":"Jiaming Zhu, Xiaofeng Yan, Yuhang Jiang, Yingying Li, Gang Wang, Yuan Xia, Hui Wang, Beibei Wang","doi":"10.1002/adfm.202417725","DOIUrl":null,"url":null,"abstract":"Quasi-layered sodium titanates have been extensively studied as anode materials for sodium-ion batteries (SIBs) owing to their quasi-zero-strain intercalative storage chemistry and high theoretical capacity. However, their sluggish sodiation kinetics and unstable electrode/electrolyte interface lead to rapid capacity decay at low temperatures. Herein, the local electronic structure and interlayer spacing of Na<sub>2</sub>Ti<sub>2</sub>O<sub>5</sub> are finely regulated by heteroelement Sn-doping, oxygen rich vacancies, and carbon-confined structure (Sn-HNTO@C) to improve low-temperature performance. Theoretical calculations and Sn doping concentration control confirm that appropriate concentrations of heteroelement Sn-doping and vacancy defects can redistribute charge density, enhance Na<sup>+</sup> adsorption, reduce Na<sup>+</sup> diffusion energy barriers, and endow Sn-HNTO@C anode with stable capacity. In addition, optimizing electrolyte systems at low temperatures allows Sn-HNTO@C to exhibit a Na<sup>+</sup>-solvent co-intercalation storage mechanism in ether-based electrolytes, avoiding high desolvent energy barriers and reducing charge transfer activation energy. Furthermore, the thin, stable solid electrolyte interface rich in organic components promotes the low-temperature interfacial Na<sup>+</sup> kinetics. Consequently, Sn-HNTO@C anode delivers high capacity over 500 cycles (177 mAh g<sup>−1</sup>) and Sn-HNTO@C//Na<sub>3</sub>(VPO<sub>4</sub>)<sub>2</sub>F<sub>3</sub> full cell presents 91 mAh g<sup>−1</sup> over 200 cycles (−15 °C). This study provides unique guidance for optimizing sodium titanate anodes and emphasizes the importance of the low-temperature electrode/electrolyte interface for SIBs.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"17 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low Temperature Rapid Interfacial Kinetics Achieved by Sodium Titanate Anode Co-Intercalation Storage Mechanism and Stable Solid Electrolyte Interface\",\"authors\":\"Jiaming Zhu, Xiaofeng Yan, Yuhang Jiang, Yingying Li, Gang Wang, Yuan Xia, Hui Wang, Beibei Wang\",\"doi\":\"10.1002/adfm.202417725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quasi-layered sodium titanates have been extensively studied as anode materials for sodium-ion batteries (SIBs) owing to their quasi-zero-strain intercalative storage chemistry and high theoretical capacity. However, their sluggish sodiation kinetics and unstable electrode/electrolyte interface lead to rapid capacity decay at low temperatures. Herein, the local electronic structure and interlayer spacing of Na<sub>2</sub>Ti<sub>2</sub>O<sub>5</sub> are finely regulated by heteroelement Sn-doping, oxygen rich vacancies, and carbon-confined structure (Sn-HNTO@C) to improve low-temperature performance. Theoretical calculations and Sn doping concentration control confirm that appropriate concentrations of heteroelement Sn-doping and vacancy defects can redistribute charge density, enhance Na<sup>+</sup> adsorption, reduce Na<sup>+</sup> diffusion energy barriers, and endow Sn-HNTO@C anode with stable capacity. In addition, optimizing electrolyte systems at low temperatures allows Sn-HNTO@C to exhibit a Na<sup>+</sup>-solvent co-intercalation storage mechanism in ether-based electrolytes, avoiding high desolvent energy barriers and reducing charge transfer activation energy. Furthermore, the thin, stable solid electrolyte interface rich in organic components promotes the low-temperature interfacial Na<sup>+</sup> kinetics. Consequently, Sn-HNTO@C anode delivers high capacity over 500 cycles (177 mAh g<sup>−1</sup>) and Sn-HNTO@C//Na<sub>3</sub>(VPO<sub>4</sub>)<sub>2</sub>F<sub>3</sub> full cell presents 91 mAh g<sup>−1</sup> over 200 cycles (−15 °C). This study provides unique guidance for optimizing sodium titanate anodes and emphasizes the importance of the low-temperature electrode/electrolyte interface for SIBs.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202417725\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202417725","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

准层状钛酸钠因其准零应变插层存储化学性质和高理论容量,已被广泛研究用作钠离子电池(SIB)的负极材料。然而,其缓慢的钠化动力学和不稳定的电极/电解质界面导致其在低温下容量迅速衰减。在此,通过异质元素锡掺杂、富氧空位和碳封闭结构(Sn-HNTO@C)对 Na2Ti2O5 的局部电子结构和层间距进行精细调节,以改善其低温性能。理论计算和Sn掺杂浓度控制证实,适当浓度的杂元素Sn掺杂和空位缺陷可重新分配电荷密度,增强Na+吸附,降低Na+扩散能垒,并赋予Sn-HNTO@C阳极稳定的容量。此外,在低温条件下优化电解质体系可使 Sn-HNTO@C 在醚基电解质中表现出 Na+ 溶剂共掺杂存储机制,从而避免高脱溶剂能垒并降低电荷转移活化能。此外,富含有机成分的薄而稳定的固体电解质界面促进了低温界面 Na+ 动力学。因此,Sn-HNTO@C 阳极在 500 次循环(177 mAh g-1)中可提供高容量,Sn-HNTO@C//Na3(VPO4)2F3 全电池在 200 次循环(-15 °C)中可提供 91 mAh g-1。这项研究为优化钛酸钠阳极提供了独特的指导,并强调了低温电极/电解质界面对 SIB 的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low Temperature Rapid Interfacial Kinetics Achieved by Sodium Titanate Anode Co-Intercalation Storage Mechanism and Stable Solid Electrolyte Interface
Quasi-layered sodium titanates have been extensively studied as anode materials for sodium-ion batteries (SIBs) owing to their quasi-zero-strain intercalative storage chemistry and high theoretical capacity. However, their sluggish sodiation kinetics and unstable electrode/electrolyte interface lead to rapid capacity decay at low temperatures. Herein, the local electronic structure and interlayer spacing of Na2Ti2O5 are finely regulated by heteroelement Sn-doping, oxygen rich vacancies, and carbon-confined structure (Sn-HNTO@C) to improve low-temperature performance. Theoretical calculations and Sn doping concentration control confirm that appropriate concentrations of heteroelement Sn-doping and vacancy defects can redistribute charge density, enhance Na+ adsorption, reduce Na+ diffusion energy barriers, and endow Sn-HNTO@C anode with stable capacity. In addition, optimizing electrolyte systems at low temperatures allows Sn-HNTO@C to exhibit a Na+-solvent co-intercalation storage mechanism in ether-based electrolytes, avoiding high desolvent energy barriers and reducing charge transfer activation energy. Furthermore, the thin, stable solid electrolyte interface rich in organic components promotes the low-temperature interfacial Na+ kinetics. Consequently, Sn-HNTO@C anode delivers high capacity over 500 cycles (177 mAh g−1) and Sn-HNTO@C//Na3(VPO4)2F3 full cell presents 91 mAh g−1 over 200 cycles (−15 °C). This study provides unique guidance for optimizing sodium titanate anodes and emphasizes the importance of the low-temperature electrode/electrolyte interface for SIBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Triboelectric Pulse Promotes Self-Cleaning, Catalysis of Nano-Confined Domain Lamellar Membranes for Effective Water Decontamination A Proton Selective Carbon Nitride Layer for High Durability Fuel Cells Ubiquitous Liquid Metal 3D Printing: From Gas, Liquid to Rigid Media Synergistic Redox Dual-Site Strategy to Boost Photosynthesis of Hydrogen Peroxide Multifunctional Silanol-Based Film-Forming Additive for Stable Zn Anode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1