掺钾钨在纳米压痕作用下的萌芽塑性:实验与缺陷动力学模拟的比较

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science & Technology Pub Date : 2024-11-26 DOI:10.1016/j.jmst.2024.10.036
Guensik Min, Jeongseok Kim, Phu Cuong Nguyen, Sungmin Lee, Yeonju Oh, Hwangsun Kim, Hyoung Chan Kim, Ill Ryu, Heung Nam Han
{"title":"掺钾钨在纳米压痕作用下的萌芽塑性:实验与缺陷动力学模拟的比较","authors":"Guensik Min, Jeongseok Kim, Phu Cuong Nguyen, Sungmin Lee, Yeonju Oh, Hwangsun Kim, Hyoung Chan Kim, Ill Ryu, Heung Nam Han","doi":"10.1016/j.jmst.2024.10.036","DOIUrl":null,"url":null,"abstract":"The effects of potassium (K) doping on the incipient plasticity of tungsten (W) under nanoindentation were investigated using a combination of experiments and mesoscale defects dynamic simulations. The transmission electron microscopy study reveal that nanometer-sized bubbles were formed through the vaporization of K in specimens prepared by spark plasma sintering. In order to investigate the mechanical properties of the K-doped W specimens, nano-characterization experiments and defect dynamics simulations were conducted, comparing with those in pure W. Nanoindentation tests reveal that the maximum shear yield stress approaches the theoretical strength in annealed pure W, while K-doped W samples exhibit significant yield drop accompanied with stochastic variations. A newly developed mesoscale defect dynamics model to concurrently couple dislocation dynamics with finite element method has been also employed to investigate micro-mechanisms of plasticity under nanoindentation and the effects of K-bubbles on the plastic deformation. The simulations revealed that the localized stress concentration induced by the K-bubbles promoted dislocation nucleation and enhanced plastic deformation, thereby reducing the yield stress, showing good agreement with the experiment.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"129 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incipient plasticity of potassium-doped tungsten under nanoindentation: A comparison between experiments and defect dynamics simulations\",\"authors\":\"Guensik Min, Jeongseok Kim, Phu Cuong Nguyen, Sungmin Lee, Yeonju Oh, Hwangsun Kim, Hyoung Chan Kim, Ill Ryu, Heung Nam Han\",\"doi\":\"10.1016/j.jmst.2024.10.036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effects of potassium (K) doping on the incipient plasticity of tungsten (W) under nanoindentation were investigated using a combination of experiments and mesoscale defects dynamic simulations. The transmission electron microscopy study reveal that nanometer-sized bubbles were formed through the vaporization of K in specimens prepared by spark plasma sintering. In order to investigate the mechanical properties of the K-doped W specimens, nano-characterization experiments and defect dynamics simulations were conducted, comparing with those in pure W. Nanoindentation tests reveal that the maximum shear yield stress approaches the theoretical strength in annealed pure W, while K-doped W samples exhibit significant yield drop accompanied with stochastic variations. A newly developed mesoscale defect dynamics model to concurrently couple dislocation dynamics with finite element method has been also employed to investigate micro-mechanisms of plasticity under nanoindentation and the effects of K-bubbles on the plastic deformation. The simulations revealed that the localized stress concentration induced by the K-bubbles promoted dislocation nucleation and enhanced plastic deformation, thereby reducing the yield stress, showing good agreement with the experiment.\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":\"129 1\",\"pages\":\"\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2024.10.036\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.10.036","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过实验和中尺度缺陷动态模拟相结合的方法,研究了掺杂钾(K)对钨(W)在纳米压痕下的萌芽塑性的影响。透射电子显微镜研究发现,在火花等离子烧结制备的试样中,钾的汽化形成了纳米尺寸的气泡。纳米压痕试验表明,退火纯 W 的最大剪切屈服应力接近理论强度,而掺 K W 试样则表现出明显的屈服下降,并伴有随机变化。我们还采用了新开发的中尺度缺陷动力学模型,将位错动力学与有限元方法结合起来,研究纳米压痕下塑性的微观机制以及 K 气泡对塑性变形的影响。模拟结果表明,K-气泡引起的局部应力集中促进了位错成核,增强了塑性变形,从而降低了屈服应力,与实验结果吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Incipient plasticity of potassium-doped tungsten under nanoindentation: A comparison between experiments and defect dynamics simulations
The effects of potassium (K) doping on the incipient plasticity of tungsten (W) under nanoindentation were investigated using a combination of experiments and mesoscale defects dynamic simulations. The transmission electron microscopy study reveal that nanometer-sized bubbles were formed through the vaporization of K in specimens prepared by spark plasma sintering. In order to investigate the mechanical properties of the K-doped W specimens, nano-characterization experiments and defect dynamics simulations were conducted, comparing with those in pure W. Nanoindentation tests reveal that the maximum shear yield stress approaches the theoretical strength in annealed pure W, while K-doped W samples exhibit significant yield drop accompanied with stochastic variations. A newly developed mesoscale defect dynamics model to concurrently couple dislocation dynamics with finite element method has been also employed to investigate micro-mechanisms of plasticity under nanoindentation and the effects of K-bubbles on the plastic deformation. The simulations revealed that the localized stress concentration induced by the K-bubbles promoted dislocation nucleation and enhanced plastic deformation, thereby reducing the yield stress, showing good agreement with the experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
期刊最新文献
Incipient plasticity of potassium-doped tungsten under nanoindentation: A comparison between experiments and defect dynamics simulations The relationship between microstructural characteristics and galvanic effect, SCC behavior of friction stir welded joint in as-welded and heat-treated conditions Segregation-assisted yield anomaly in a Co-rich chemically complex intermetallic alloy at high temperatures Fabrication and luminescent properties of highly transparent novel high-entropy (Lu0.2Y0.2Gd0.2Yb0.2Er0.2)2O3 ceramic Building Mo2C/C/TCN heterojunction for efficient noble-metal-free plastic photoreforming and hydrogen generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1