Mengjiao Yu, Dandan Wu, Changshun Dai, Mingsheng Long, Lei Shan, Chunchang Wang, Feng Li
{"title":"具有三相结构的 Pb0.97La0.02(Hf0.92Ti0.08)O3 反铁电陶瓷中与温度相关的电致发光性能","authors":"Mengjiao Yu, Dandan Wu, Changshun Dai, Mingsheng Long, Lei Shan, Chunchang Wang, Feng Li","doi":"10.1063/5.0245821","DOIUrl":null,"url":null,"abstract":"Antiferroelectric–ferroelectric phase transition in antiferroelectric (AFE) materials usually triggers high-performance electrocaloric effect (ECE), as represented by PbZrO3-based AFE. As an isostructure to PbZrO3, EC research in PbHfO3-based AFE ceramics are significantly left out. In this work, temperature dependent electrocaloric performances in Pb0.97La0.02(Hf0.92Ti0.08)O3 with typical AFE features are explored, and rhombohedral ferroelectric (FER), AFE1 (A1, Pbam), and AFE2 (A2, Imma) triple phases are induced as temperature increases. This leads to dual coexisting regions with FER-to-A1 and A1-to-A2 at a temperature of ∼20 °C and ∼100 °C, respectively, where local EC maxima are produced with an ΔT ∼0.06 K and ΔT ∼0.16 K (E = 70 kV/cm). These are certified by comprehensive characterizations of in situ x-ray diffractometer, AFE electrical properties, and Raman spectra analysis. This strongly indicates that AFE (Pbam)-to-AFE (Imma) phase transition could efficiently optimize ECE in PbHfO3-based AFE, in addition to the conventional understandings of FE–paraelectric and AFE–paraelectric modulation strategy. This work not only presents the potential of PbHfO3-based AFE in solid-state cooling applications but also serves as a catalyst for further seeking for high-EC AFE materials.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"183 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature dependent electrocaloric performances in Pb0.97La0.02(Hf0.92Ti0.08)O3 antiferroelectric ceramic with triple phase structures\",\"authors\":\"Mengjiao Yu, Dandan Wu, Changshun Dai, Mingsheng Long, Lei Shan, Chunchang Wang, Feng Li\",\"doi\":\"10.1063/5.0245821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Antiferroelectric–ferroelectric phase transition in antiferroelectric (AFE) materials usually triggers high-performance electrocaloric effect (ECE), as represented by PbZrO3-based AFE. As an isostructure to PbZrO3, EC research in PbHfO3-based AFE ceramics are significantly left out. In this work, temperature dependent electrocaloric performances in Pb0.97La0.02(Hf0.92Ti0.08)O3 with typical AFE features are explored, and rhombohedral ferroelectric (FER), AFE1 (A1, Pbam), and AFE2 (A2, Imma) triple phases are induced as temperature increases. This leads to dual coexisting regions with FER-to-A1 and A1-to-A2 at a temperature of ∼20 °C and ∼100 °C, respectively, where local EC maxima are produced with an ΔT ∼0.06 K and ΔT ∼0.16 K (E = 70 kV/cm). These are certified by comprehensive characterizations of in situ x-ray diffractometer, AFE electrical properties, and Raman spectra analysis. This strongly indicates that AFE (Pbam)-to-AFE (Imma) phase transition could efficiently optimize ECE in PbHfO3-based AFE, in addition to the conventional understandings of FE–paraelectric and AFE–paraelectric modulation strategy. This work not only presents the potential of PbHfO3-based AFE in solid-state cooling applications but also serves as a catalyst for further seeking for high-EC AFE materials.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"183 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0245821\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0245821","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Temperature dependent electrocaloric performances in Pb0.97La0.02(Hf0.92Ti0.08)O3 antiferroelectric ceramic with triple phase structures
Antiferroelectric–ferroelectric phase transition in antiferroelectric (AFE) materials usually triggers high-performance electrocaloric effect (ECE), as represented by PbZrO3-based AFE. As an isostructure to PbZrO3, EC research in PbHfO3-based AFE ceramics are significantly left out. In this work, temperature dependent electrocaloric performances in Pb0.97La0.02(Hf0.92Ti0.08)O3 with typical AFE features are explored, and rhombohedral ferroelectric (FER), AFE1 (A1, Pbam), and AFE2 (A2, Imma) triple phases are induced as temperature increases. This leads to dual coexisting regions with FER-to-A1 and A1-to-A2 at a temperature of ∼20 °C and ∼100 °C, respectively, where local EC maxima are produced with an ΔT ∼0.06 K and ΔT ∼0.16 K (E = 70 kV/cm). These are certified by comprehensive characterizations of in situ x-ray diffractometer, AFE electrical properties, and Raman spectra analysis. This strongly indicates that AFE (Pbam)-to-AFE (Imma) phase transition could efficiently optimize ECE in PbHfO3-based AFE, in addition to the conventional understandings of FE–paraelectric and AFE–paraelectric modulation strategy. This work not only presents the potential of PbHfO3-based AFE in solid-state cooling applications but also serves as a catalyst for further seeking for high-EC AFE materials.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.