{"title":"机器学习时代的密度泛函理论和材料数据库","authors":"Arti Kashyap","doi":"10.1063/5.0235654","DOIUrl":null,"url":null,"abstract":"This perspective article presents the density functional theory and traces its evolution. With the advancement in density functional theory-based computations and the efforts to collate the data generated through density functional theory, the field now has a good repository/database of materials and their properties. This repository, though not as substantial as generally used for machine learning, has nonetheless made it possible to combine density functional theory and machine learning. This article highlights current research challenges and presents an optimistic outlook for the future of “Density Functional Theory with Machine Learning” by discussing some specific examples.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"7 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Density functional theory and material databases in the era of machine learning\",\"authors\":\"Arti Kashyap\",\"doi\":\"10.1063/5.0235654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This perspective article presents the density functional theory and traces its evolution. With the advancement in density functional theory-based computations and the efforts to collate the data generated through density functional theory, the field now has a good repository/database of materials and their properties. This repository, though not as substantial as generally used for machine learning, has nonetheless made it possible to combine density functional theory and machine learning. This article highlights current research challenges and presents an optimistic outlook for the future of “Density Functional Theory with Machine Learning” by discussing some specific examples.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0235654\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0235654","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Density functional theory and material databases in the era of machine learning
This perspective article presents the density functional theory and traces its evolution. With the advancement in density functional theory-based computations and the efforts to collate the data generated through density functional theory, the field now has a good repository/database of materials and their properties. This repository, though not as substantial as generally used for machine learning, has nonetheless made it possible to combine density functional theory and machine learning. This article highlights current research challenges and presents an optimistic outlook for the future of “Density Functional Theory with Machine Learning” by discussing some specific examples.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.