{"title":"叠层压力增强全固态电池中硅负极断裂的尺寸阈值","authors":"Menglin Li, Dingchuan Xue, Zhaoyu Rong, Ruyue Fang, Bo Wang, Yali Liang, Xuedong Zhang, Qiao Huang, Zhenyu Wang, Lingyun Zhu, Liqiang Zhang, Yongfu Tang, Sulin Zhang, Jianyu Huang","doi":"10.1002/adfm.202415696","DOIUrl":null,"url":null,"abstract":"Silicon (Si) has long captured the spotlight as an anode candidate for lithium-ion batteries (LIBs) due to its exceptionally high theoretical capacity and abundant availability. However, chemomechanical failure of larger-sized Si has plagued its electrochemical performance. Herein the presence of a stack pressure-dependent size effect of Si particles in sulfide-based all-solid-state batteries (ASSBs) is unveiled that can be harnessed to overcome the chemomechanical failure of Si. Remarkably, the application of stack pressure, necessary to enhance interface contact and charge transfer in ASSBs, shifts the size threshold from nanometer scale observed in liquid electrolyte batteries to the microscale in ASSBs. The essence of the stack pressure-dependent size effect is the suppression of the Hoop stress that causes the fracture of Si particles during lithiation by the applied external stress. This revelation offers an effective strategy to optimize the size of Si for the desired electrochemical performance in ASSBs. These findings provide invaluable insights that offer indispensable guidance for mitigating Si anode failure in ASSBs, ultimately advancing the next-generation high-performance Si-based ASSBs.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"191 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stack Pressure Enhanced Size Threshold of Si Anode Fracture in All-Solid-State Batteries\",\"authors\":\"Menglin Li, Dingchuan Xue, Zhaoyu Rong, Ruyue Fang, Bo Wang, Yali Liang, Xuedong Zhang, Qiao Huang, Zhenyu Wang, Lingyun Zhu, Liqiang Zhang, Yongfu Tang, Sulin Zhang, Jianyu Huang\",\"doi\":\"10.1002/adfm.202415696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon (Si) has long captured the spotlight as an anode candidate for lithium-ion batteries (LIBs) due to its exceptionally high theoretical capacity and abundant availability. However, chemomechanical failure of larger-sized Si has plagued its electrochemical performance. Herein the presence of a stack pressure-dependent size effect of Si particles in sulfide-based all-solid-state batteries (ASSBs) is unveiled that can be harnessed to overcome the chemomechanical failure of Si. Remarkably, the application of stack pressure, necessary to enhance interface contact and charge transfer in ASSBs, shifts the size threshold from nanometer scale observed in liquid electrolyte batteries to the microscale in ASSBs. The essence of the stack pressure-dependent size effect is the suppression of the Hoop stress that causes the fracture of Si particles during lithiation by the applied external stress. This revelation offers an effective strategy to optimize the size of Si for the desired electrochemical performance in ASSBs. These findings provide invaluable insights that offer indispensable guidance for mitigating Si anode failure in ASSBs, ultimately advancing the next-generation high-performance Si-based ASSBs.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"191 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202415696\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202415696","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Stack Pressure Enhanced Size Threshold of Si Anode Fracture in All-Solid-State Batteries
Silicon (Si) has long captured the spotlight as an anode candidate for lithium-ion batteries (LIBs) due to its exceptionally high theoretical capacity and abundant availability. However, chemomechanical failure of larger-sized Si has plagued its electrochemical performance. Herein the presence of a stack pressure-dependent size effect of Si particles in sulfide-based all-solid-state batteries (ASSBs) is unveiled that can be harnessed to overcome the chemomechanical failure of Si. Remarkably, the application of stack pressure, necessary to enhance interface contact and charge transfer in ASSBs, shifts the size threshold from nanometer scale observed in liquid electrolyte batteries to the microscale in ASSBs. The essence of the stack pressure-dependent size effect is the suppression of the Hoop stress that causes the fracture of Si particles during lithiation by the applied external stress. This revelation offers an effective strategy to optimize the size of Si for the desired electrochemical performance in ASSBs. These findings provide invaluable insights that offer indispensable guidance for mitigating Si anode failure in ASSBs, ultimately advancing the next-generation high-performance Si-based ASSBs.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.