Shali Jiang, Can Xie, Ting Liu, Xiaomin Yuan, Jiaxin Zheng, Zimin Lian, Min Ouyang, Yongbo Peng, Liyi Zhou
{"title":"用于快速评估补硒效果和成像的强大荧光纳米探针","authors":"Shali Jiang, Can Xie, Ting Liu, Xiaomin Yuan, Jiaxin Zheng, Zimin Lian, Min Ouyang, Yongbo Peng, Liyi Zhou","doi":"10.1021/acs.analchem.4c04020","DOIUrl":null,"url":null,"abstract":"At present, an increasing number of people pay more attention to selenium-enriched food, but the quality of the selenium-enriched food varies. Therefore, there is an urgent need to develop a new tool to assess the effects of selenium supplementation in foods by rapidly detecting the levels of the metabolite selenium selenocysteine (Sec). In this work, a fluorescent nanoprobe <b>CS-Sec</b> was designed, synthesized, and characterized for Sec detection and imaging in living biosystems, which exhibited the advantages of good biocompatibility, excellent water solubility, high sensitivity, high selectivity, and rapid response (2.5 min) for Sec detection and imaging <i>in vitro</i> and <i>in vivo</i> and evaluation of selenium supplementation in selenium-rich foods. Specifically, <b>CS-Sec</b> was constructed by grafting alkyne groups on organic small-molecule fluorescent probes with azide groups on azido chitosan by click chemistry. A 2,4-dinitrophenyl ether (DNB) with a strong intramolecular charge transfer (ICT) effect was selected as a response group and fluorescence-quenching group, which had excellent chemical specificity toward Sec. In addition, <b>CS-Sec</b> has high selectivity and sensitivity toward Sec over other analytes, and an excellent limit of detection (LOD) is as low as 15 nM. Impressively, <b>CS-Sec</b> has been successfully used to detect and image the concentration of Sec in living HepG2 cells and mouse models with exciting results, indicating that the newly constructed <b>CS-Sec</b> can provide a robust molecule tool for the rapid evaluation of the selenium supplementation effect and imaging in the future.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"7 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Fluorescent Nanoprobe for Rapid Evaluation of the Selenium Supplementation Effect and Imaging\",\"authors\":\"Shali Jiang, Can Xie, Ting Liu, Xiaomin Yuan, Jiaxin Zheng, Zimin Lian, Min Ouyang, Yongbo Peng, Liyi Zhou\",\"doi\":\"10.1021/acs.analchem.4c04020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present, an increasing number of people pay more attention to selenium-enriched food, but the quality of the selenium-enriched food varies. Therefore, there is an urgent need to develop a new tool to assess the effects of selenium supplementation in foods by rapidly detecting the levels of the metabolite selenium selenocysteine (Sec). In this work, a fluorescent nanoprobe <b>CS-Sec</b> was designed, synthesized, and characterized for Sec detection and imaging in living biosystems, which exhibited the advantages of good biocompatibility, excellent water solubility, high sensitivity, high selectivity, and rapid response (2.5 min) for Sec detection and imaging <i>in vitro</i> and <i>in vivo</i> and evaluation of selenium supplementation in selenium-rich foods. Specifically, <b>CS-Sec</b> was constructed by grafting alkyne groups on organic small-molecule fluorescent probes with azide groups on azido chitosan by click chemistry. A 2,4-dinitrophenyl ether (DNB) with a strong intramolecular charge transfer (ICT) effect was selected as a response group and fluorescence-quenching group, which had excellent chemical specificity toward Sec. In addition, <b>CS-Sec</b> has high selectivity and sensitivity toward Sec over other analytes, and an excellent limit of detection (LOD) is as low as 15 nM. Impressively, <b>CS-Sec</b> has been successfully used to detect and image the concentration of Sec in living HepG2 cells and mouse models with exciting results, indicating that the newly constructed <b>CS-Sec</b> can provide a robust molecule tool for the rapid evaluation of the selenium supplementation effect and imaging in the future.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c04020\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c04020","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Robust Fluorescent Nanoprobe for Rapid Evaluation of the Selenium Supplementation Effect and Imaging
At present, an increasing number of people pay more attention to selenium-enriched food, but the quality of the selenium-enriched food varies. Therefore, there is an urgent need to develop a new tool to assess the effects of selenium supplementation in foods by rapidly detecting the levels of the metabolite selenium selenocysteine (Sec). In this work, a fluorescent nanoprobe CS-Sec was designed, synthesized, and characterized for Sec detection and imaging in living biosystems, which exhibited the advantages of good biocompatibility, excellent water solubility, high sensitivity, high selectivity, and rapid response (2.5 min) for Sec detection and imaging in vitro and in vivo and evaluation of selenium supplementation in selenium-rich foods. Specifically, CS-Sec was constructed by grafting alkyne groups on organic small-molecule fluorescent probes with azide groups on azido chitosan by click chemistry. A 2,4-dinitrophenyl ether (DNB) with a strong intramolecular charge transfer (ICT) effect was selected as a response group and fluorescence-quenching group, which had excellent chemical specificity toward Sec. In addition, CS-Sec has high selectivity and sensitivity toward Sec over other analytes, and an excellent limit of detection (LOD) is as low as 15 nM. Impressively, CS-Sec has been successfully used to detect and image the concentration of Sec in living HepG2 cells and mouse models with exciting results, indicating that the newly constructed CS-Sec can provide a robust molecule tool for the rapid evaluation of the selenium supplementation effect and imaging in the future.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.