{"title":"基于 VCO 的脑电图记录中的高效转移性缓解和子带滤波器","authors":"Zijian Tang;Chao Sun;Yuan Ma;Minqian Zheng;Chao Zhang;Zhixiong Ma;Tongfei Wang;Milin Zhang","doi":"10.1109/TCSII.2024.3446187","DOIUrl":null,"url":null,"abstract":"This brief proposes an efficient structure for electroencephalogram (EEG) signal recording. A single-sample strategy is proposed to mitigate metastability issues in Voltage-Controlled Oscillator (VCO) Analog Front Ends (AFEs), offering timing margins of 14 phase cycles and simplifying the result arbitration logic to 1-bit multiplexing. Additionally, an analysis of existing EEG sub-band filter designs is presented, followed by an efficient band multiplexing serial multiplier structure that capitalizes on timing slacks. This design features a reduction in both the number of multipliers and the complexity of the multiplexing network. The proposed design was implemented using 40nm CMOS technology. The VCO-AFE demonstrates stable, error-free recordings with an input-referred noise (IRN) of \n<inline-formula> <tex-math>$0.66\\boldsymbol {\\mu }$ </tex-math></inline-formula>\nV\n<inline-formula> <tex-math>$\\boldsymbol {_{rms}}$ </tex-math></inline-formula>\n within 0.5–60Hz, according to the measurement results. The proposed sub-band filter exhibits substantial savings of 11% and 51% in area and power, respectively, compared to prior work when scaled to the same technology node.","PeriodicalId":13101,"journal":{"name":"IEEE Transactions on Circuits and Systems II: Express Briefs","volume":"71 12","pages":"4999-5003"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Metastability Mitigation and Sub-Band Filtering in VCO-Based EEG Recording\",\"authors\":\"Zijian Tang;Chao Sun;Yuan Ma;Minqian Zheng;Chao Zhang;Zhixiong Ma;Tongfei Wang;Milin Zhang\",\"doi\":\"10.1109/TCSII.2024.3446187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This brief proposes an efficient structure for electroencephalogram (EEG) signal recording. A single-sample strategy is proposed to mitigate metastability issues in Voltage-Controlled Oscillator (VCO) Analog Front Ends (AFEs), offering timing margins of 14 phase cycles and simplifying the result arbitration logic to 1-bit multiplexing. Additionally, an analysis of existing EEG sub-band filter designs is presented, followed by an efficient band multiplexing serial multiplier structure that capitalizes on timing slacks. This design features a reduction in both the number of multipliers and the complexity of the multiplexing network. The proposed design was implemented using 40nm CMOS technology. The VCO-AFE demonstrates stable, error-free recordings with an input-referred noise (IRN) of \\n<inline-formula> <tex-math>$0.66\\\\boldsymbol {\\\\mu }$ </tex-math></inline-formula>\\nV\\n<inline-formula> <tex-math>$\\\\boldsymbol {_{rms}}$ </tex-math></inline-formula>\\n within 0.5–60Hz, according to the measurement results. The proposed sub-band filter exhibits substantial savings of 11% and 51% in area and power, respectively, compared to prior work when scaled to the same technology node.\",\"PeriodicalId\":13101,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"volume\":\"71 12\",\"pages\":\"4999-5003\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems II: Express Briefs\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10640064/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems II: Express Briefs","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10640064/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Efficient Metastability Mitigation and Sub-Band Filtering in VCO-Based EEG Recording
This brief proposes an efficient structure for electroencephalogram (EEG) signal recording. A single-sample strategy is proposed to mitigate metastability issues in Voltage-Controlled Oscillator (VCO) Analog Front Ends (AFEs), offering timing margins of 14 phase cycles and simplifying the result arbitration logic to 1-bit multiplexing. Additionally, an analysis of existing EEG sub-band filter designs is presented, followed by an efficient band multiplexing serial multiplier structure that capitalizes on timing slacks. This design features a reduction in both the number of multipliers and the complexity of the multiplexing network. The proposed design was implemented using 40nm CMOS technology. The VCO-AFE demonstrates stable, error-free recordings with an input-referred noise (IRN) of
$0.66\boldsymbol {\mu }$
V
$\boldsymbol {_{rms}}$
within 0.5–60Hz, according to the measurement results. The proposed sub-band filter exhibits substantial savings of 11% and 51% in area and power, respectively, compared to prior work when scaled to the same technology node.
期刊介绍:
TCAS II publishes brief papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes:
Circuits: Analog, Digital and Mixed Signal Circuits and Systems
Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic
Circuits and Systems, Power Electronics and Systems
Software for Analog-and-Logic Circuits and Systems
Control aspects of Circuits and Systems.