Santiago Fernández;F. Javier López-Martínez;Fernando H. Gregorio;Juan Cousseau
{"title":"提高 SWIPT 效率和性能的压缩和预失真技术","authors":"Santiago Fernández;F. Javier López-Martínez;Fernando H. Gregorio;Juan Cousseau","doi":"10.1109/TGCN.2024.3405627","DOIUrl":null,"url":null,"abstract":"In this work, we analyze how the use of companding techniques, together with digital predistortion (DPD), can be leveraged to improve system efficiency and performance in simultaneous wireless information and power transfer (SWIPT) systems based on power splitting. By taking advantage of the benefits of each of these well-known techniques to mitigate non-linear effects due to power amplifier (PA) and energy harvesting (EH) operation, we illustrate how DPD and companding can be effectively combined to improve the EH efficiency while keeping unalterable the information transfer performance. We establish design criteria that allow the PA to operate in a higher efficiency region so that the reduction in peak-to-average power ratio over the transmitted signal is translated into an increase in the average radiated power and EH efficiency. The performance of DPD and companding techniques is evaluated in a number of scenarios, showing that a combination of both techniques allows to significantly increase the power transfer efficiency in SWIPT systems.","PeriodicalId":13052,"journal":{"name":"IEEE Transactions on Green Communications and Networking","volume":"8 4","pages":"1676-1691"},"PeriodicalIF":5.3000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Companding and Predistortion Techniques for Improved Efficiency and Performance in SWIPT\",\"authors\":\"Santiago Fernández;F. Javier López-Martínez;Fernando H. Gregorio;Juan Cousseau\",\"doi\":\"10.1109/TGCN.2024.3405627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we analyze how the use of companding techniques, together with digital predistortion (DPD), can be leveraged to improve system efficiency and performance in simultaneous wireless information and power transfer (SWIPT) systems based on power splitting. By taking advantage of the benefits of each of these well-known techniques to mitigate non-linear effects due to power amplifier (PA) and energy harvesting (EH) operation, we illustrate how DPD and companding can be effectively combined to improve the EH efficiency while keeping unalterable the information transfer performance. We establish design criteria that allow the PA to operate in a higher efficiency region so that the reduction in peak-to-average power ratio over the transmitted signal is translated into an increase in the average radiated power and EH efficiency. The performance of DPD and companding techniques is evaluated in a number of scenarios, showing that a combination of both techniques allows to significantly increase the power transfer efficiency in SWIPT systems.\",\"PeriodicalId\":13052,\"journal\":{\"name\":\"IEEE Transactions on Green Communications and Networking\",\"volume\":\"8 4\",\"pages\":\"1676-1691\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Green Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10539318/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Green Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10539318/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Companding and Predistortion Techniques for Improved Efficiency and Performance in SWIPT
In this work, we analyze how the use of companding techniques, together with digital predistortion (DPD), can be leveraged to improve system efficiency and performance in simultaneous wireless information and power transfer (SWIPT) systems based on power splitting. By taking advantage of the benefits of each of these well-known techniques to mitigate non-linear effects due to power amplifier (PA) and energy harvesting (EH) operation, we illustrate how DPD and companding can be effectively combined to improve the EH efficiency while keeping unalterable the information transfer performance. We establish design criteria that allow the PA to operate in a higher efficiency region so that the reduction in peak-to-average power ratio over the transmitted signal is translated into an increase in the average radiated power and EH efficiency. The performance of DPD and companding techniques is evaluated in a number of scenarios, showing that a combination of both techniques allows to significantly increase the power transfer efficiency in SWIPT systems.