用于热成像检测的时空方差图像重构

Logan M. Wilcox;Emily M. Johnson;Emma T. Bohannon;Catherine E. Johnson;Kristen M. Donnell
{"title":"用于热成像检测的时空方差图像重构","authors":"Logan M. Wilcox;Emily M. Johnson;Emma T. Bohannon;Catherine E. Johnson;Kristen M. Donnell","doi":"10.1109/OJIM.2024.3493891","DOIUrl":null,"url":null,"abstract":"Active microwave thermography (AMT) is a nondestructive testing and evaluation (NDT&E) technique that utilizes a radiating antenna to induce a thermal increase on or within a specimen under test (SUT). The radiated power density is spatially nonuniform and therefore results in a spatially nonuniform thermal excitation, which may result in missed or false indications of defects. To this end, this work proposes a novel image reconstruction technique for nonuniform excitation/heating and is referred to as spatiotemporal variance reconstruction (STVR). STVR utilizes the spatial and temporal variance of the surface thermal profile. STVR is advantageous in that it does not require a reference measurement nor manipulation of the interrogating signal to mitigate the effect of the nonuniform thermal excitation. To illustrate the improvements offered by STVR, AMT measurements were completed on a set of carbon fiber-reinforced polymer (CFRP) structures with an absorbing topcoat. Additional thermographic measurements were completed utilizing a halogen lamp source on a pressed high explosive (HE) SUT. In all cases, the STVR-processed results provide an indication of the defect, within 5% spatial error, without the need for a reference measurement or signal manipulation, which was not previously possible.","PeriodicalId":100630,"journal":{"name":"IEEE Open Journal of Instrumentation and Measurement","volume":"3 ","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10747210","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal Variance Image Reconstruction for Thermographic Inspections\",\"authors\":\"Logan M. Wilcox;Emily M. Johnson;Emma T. Bohannon;Catherine E. Johnson;Kristen M. Donnell\",\"doi\":\"10.1109/OJIM.2024.3493891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Active microwave thermography (AMT) is a nondestructive testing and evaluation (NDT&E) technique that utilizes a radiating antenna to induce a thermal increase on or within a specimen under test (SUT). The radiated power density is spatially nonuniform and therefore results in a spatially nonuniform thermal excitation, which may result in missed or false indications of defects. To this end, this work proposes a novel image reconstruction technique for nonuniform excitation/heating and is referred to as spatiotemporal variance reconstruction (STVR). STVR utilizes the spatial and temporal variance of the surface thermal profile. STVR is advantageous in that it does not require a reference measurement nor manipulation of the interrogating signal to mitigate the effect of the nonuniform thermal excitation. To illustrate the improvements offered by STVR, AMT measurements were completed on a set of carbon fiber-reinforced polymer (CFRP) structures with an absorbing topcoat. Additional thermographic measurements were completed utilizing a halogen lamp source on a pressed high explosive (HE) SUT. In all cases, the STVR-processed results provide an indication of the defect, within 5% spatial error, without the need for a reference measurement or signal manipulation, which was not previously possible.\",\"PeriodicalId\":100630,\"journal\":{\"name\":\"IEEE Open Journal of Instrumentation and Measurement\",\"volume\":\"3 \",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10747210\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Instrumentation and Measurement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10747210/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Instrumentation and Measurement","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10747210/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有源微波热成像仪(AMT)是一种无损检测和评估(NDT&E)技术,它利用辐射天线在被测样品(SUT)上或被测样品内部引起热量增加。辐射功率密度在空间上是不均匀的,因此会产生空间上不均匀的热激励,这可能会导致漏报或误报缺陷。为此,本研究提出了一种针对非均匀激励/加热的新型图像重建技术,即时空方差重建(STVR)。STVR 利用表面热剖面的时空方差。STVR 的优势在于,它不需要参考测量,也不需要对询问信号进行处理来减轻非均匀热激励的影响。为了说明 STVR 所带来的改进,我们在一组带有吸收表层的碳纤维增强聚合物 (CFRP) 结构上完成了 AMT 测量。此外,还利用卤素灯源对压制的高爆 (HE) SUT 进行了热成像测量。在所有情况下,经过 STVR 处理的结果都能显示缺陷,空间误差不超过 5%,而且无需参考测量或信号处理,这在以前是不可能实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatiotemporal Variance Image Reconstruction for Thermographic Inspections
Active microwave thermography (AMT) is a nondestructive testing and evaluation (NDT&E) technique that utilizes a radiating antenna to induce a thermal increase on or within a specimen under test (SUT). The radiated power density is spatially nonuniform and therefore results in a spatially nonuniform thermal excitation, which may result in missed or false indications of defects. To this end, this work proposes a novel image reconstruction technique for nonuniform excitation/heating and is referred to as spatiotemporal variance reconstruction (STVR). STVR utilizes the spatial and temporal variance of the surface thermal profile. STVR is advantageous in that it does not require a reference measurement nor manipulation of the interrogating signal to mitigate the effect of the nonuniform thermal excitation. To illustrate the improvements offered by STVR, AMT measurements were completed on a set of carbon fiber-reinforced polymer (CFRP) structures with an absorbing topcoat. Additional thermographic measurements were completed utilizing a halogen lamp source on a pressed high explosive (HE) SUT. In all cases, the STVR-processed results provide an indication of the defect, within 5% spatial error, without the need for a reference measurement or signal manipulation, which was not previously possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatiotemporal Variance Image Reconstruction for Thermographic Inspections Fault Detection in an Electro-Hydrostatic Actuator Using Polyscale Complexity Measures and Bayesian Classification Baseline-Free Damage Imaging for Structural Health Monitoring of Composite Lap Joint Using Ultrasonic-Guided Waves Spiking Neural Networks for Energy-Efficient Acoustic Emission-Based Monitoring IMU Optimal Rotation Rates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1