利用忆阻器随机性进行序列贝叶斯推理和蒙特卡洛采样

IF 5.2 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Circuits and Systems I: Regular Papers Pub Date : 2024-10-03 DOI:10.1109/TCSI.2024.3470318
Adil Malik;Christos Papavassiliou
{"title":"利用忆阻器随机性进行序列贝叶斯推理和蒙特卡洛采样","authors":"Adil Malik;Christos Papavassiliou","doi":"10.1109/TCSI.2024.3470318","DOIUrl":null,"url":null,"abstract":"In this paper, we study the stochastic state trajectory and conductance distributions of memristors under periodic pulse excitation. Our results, backed by experimental evidence, reveal that practical memristors exhibit a \n<inline-formula> <tex-math>$1/f^{2}$ </tex-math></inline-formula>\n Brownian noise power spectrum. Based on this, we develop a Memristive Distribution Generator (MDG) circuit that produces tunable analog distributions by exploiting the physical stochasticity of memristors. By encoding the prior distributions of Bayesian problems in the physical output samples of these circuits, we demonstrate that Monte-Carlo sampling can be devised without knowledge of the analytical output distribution of the memristor. Using examples of 1-D Bayesian linear regression and a dynamic 2-D nonlinear localisation problem, we show how MDG circuits can act as a tunable source of randomness, efficiently representing distributions of interest. Our results, obtained using Pt/TiO2/Pt memristors, validate the use of memristor-based MDGs for implementing probabilistic algorithms.","PeriodicalId":13039,"journal":{"name":"IEEE Transactions on Circuits and Systems I: Regular Papers","volume":"71 12","pages":"5506-5518"},"PeriodicalIF":5.2000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequential Bayesian Inference and Monte-Carlo Sampling Using Memristor Stochasticity\",\"authors\":\"Adil Malik;Christos Papavassiliou\",\"doi\":\"10.1109/TCSI.2024.3470318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the stochastic state trajectory and conductance distributions of memristors under periodic pulse excitation. Our results, backed by experimental evidence, reveal that practical memristors exhibit a \\n<inline-formula> <tex-math>$1/f^{2}$ </tex-math></inline-formula>\\n Brownian noise power spectrum. Based on this, we develop a Memristive Distribution Generator (MDG) circuit that produces tunable analog distributions by exploiting the physical stochasticity of memristors. By encoding the prior distributions of Bayesian problems in the physical output samples of these circuits, we demonstrate that Monte-Carlo sampling can be devised without knowledge of the analytical output distribution of the memristor. Using examples of 1-D Bayesian linear regression and a dynamic 2-D nonlinear localisation problem, we show how MDG circuits can act as a tunable source of randomness, efficiently representing distributions of interest. Our results, obtained using Pt/TiO2/Pt memristors, validate the use of memristor-based MDGs for implementing probabilistic algorithms.\",\"PeriodicalId\":13039,\"journal\":{\"name\":\"IEEE Transactions on Circuits and Systems I: Regular Papers\",\"volume\":\"71 12\",\"pages\":\"5506-5518\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Circuits and Systems I: Regular Papers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10704776/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Circuits and Systems I: Regular Papers","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10704776/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了周期性脉冲激励下忆阻器的随机状态轨迹和电导分布。实验证明,我们的研究结果表明,实用的忆阻器表现出 1 美元/f^{2}美元的布朗噪声功率谱。在此基础上,我们开发了一种忆阻器分布发生器(MDG)电路,利用忆阻器的物理随机性产生可调整的模拟分布。通过将贝叶斯问题的先验分布编码到这些电路的物理输出样本中,我们证明了可以在不了解忆阻器分析输出分布的情况下设计蒙特卡洛采样。利用一维贝叶斯线性回归和动态二维非线性定位问题的例子,我们展示了 MDG 电路如何充当可调整的随机性源,有效地表示感兴趣的分布。我们使用铂/二氧化钛/铂忆阻器获得的结果验证了使用基于忆阻器的 MDG 实现概率算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sequential Bayesian Inference and Monte-Carlo Sampling Using Memristor Stochasticity
In this paper, we study the stochastic state trajectory and conductance distributions of memristors under periodic pulse excitation. Our results, backed by experimental evidence, reveal that practical memristors exhibit a $1/f^{2}$ Brownian noise power spectrum. Based on this, we develop a Memristive Distribution Generator (MDG) circuit that produces tunable analog distributions by exploiting the physical stochasticity of memristors. By encoding the prior distributions of Bayesian problems in the physical output samples of these circuits, we demonstrate that Monte-Carlo sampling can be devised without knowledge of the analytical output distribution of the memristor. Using examples of 1-D Bayesian linear regression and a dynamic 2-D nonlinear localisation problem, we show how MDG circuits can act as a tunable source of randomness, efficiently representing distributions of interest. Our results, obtained using Pt/TiO2/Pt memristors, validate the use of memristor-based MDGs for implementing probabilistic algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Circuits and Systems I: Regular Papers
IEEE Transactions on Circuits and Systems I: Regular Papers 工程技术-工程:电子与电气
CiteScore
9.80
自引率
11.80%
发文量
441
审稿时长
2 months
期刊介绍: TCAS I publishes regular papers in the field specified by the theory, analysis, design, and practical implementations of circuits, and the application of circuit techniques to systems and to signal processing. Included is the whole spectrum from basic scientific theory to industrial applications. The field of interest covered includes: - Circuits: Analog, Digital and Mixed Signal Circuits and Systems - Nonlinear Circuits and Systems, Integrated Sensors, MEMS and Systems on Chip, Nanoscale Circuits and Systems, Optoelectronic - Circuits and Systems, Power Electronics and Systems - Software for Analog-and-Logic Circuits and Systems - Control aspects of Circuits and Systems.
期刊最新文献
Table of Contents IEEE Circuits and Systems Society Information IEEE Transactions on Circuits and Systems--I: Regular Papers Information for Authors IEEE Transactions on Circuits and Systems--I: Regular Papers Publication Information Guest Editorial Special Issue on Emerging Hardware Security and Trust Technologies—AsianHOST 2023
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1