用于二次离子质谱分析(SIMS)的无铅锡铋合金支架制备方法†。

IF 3.1 2区 化学 Q2 CHEMISTRY, ANALYTICAL Journal of Analytical Atomic Spectrometry Pub Date : 2024-10-09 DOI:10.1039/D4JA00252K
Wan-Feng Zhang, Qing Yang, Xiao-Ping Xia, De-Wen Zheng, Ze-Xian Cui, Yan-Qiang Zhang and Yi-Gang Xu
{"title":"用于二次离子质谱分析(SIMS)的无铅锡铋合金支架制备方法†。","authors":"Wan-Feng Zhang, Qing Yang, Xiao-Ping Xia, De-Wen Zheng, Ze-Xian Cui, Yan-Qiang Zhang and Yi-Gang Xu","doi":"10.1039/D4JA00252K","DOIUrl":null,"url":null,"abstract":"<p >Sample preparation is a critical step to achieve reliable <em>in situ</em> chemical analysis. Sample mounting technique with a tin-based alloy was developed in recent years, which is particularly useful for high-precision volatile analyses by secondary ion mass spectrometry (SIMS). However, the success of this technique is hindered by challenges, such as complex alloy preparation and potential Pb contamination. Herein, we introduce a new Sn–Bi alloy preparation method that may overcome these hurdles and assess its potential as a standard preparation method for <em>in situ</em> volatile and isotope analyses. This new alloy can be manufactured with commercially available pure tin and bismuth metal (atomic Sn : Bi = 42 : 58), and its production requires only a heating plate and clean containers. This ensures its high accessibility to laboratories worldwide. The Pb content of the alloy is dependent on the tin and bismuth used. The material (Sn and Bi) from three different manufacturers were evaluated in this study, resulting in the virtually Pb-free MAC alloy (Pb &lt;0.2 μg g<small><sup>−1</sup></small>). The SIMS U–Pb dating results of the zircon standards (Qinghu, Plešovice, and SA01) are consistent with the recommended values (within error). Furthermore, the mounted samples exhibit satisfactory relief on this alloy, suggesting that this alloy material is appropriate for the analysis of oxygen isotopes. The routine external precision of oxygen isotope ratios is better than 0.30‰ (2sd), on par with that obtained with epoxy mounts. The water background in the SIMS sample chamber can be recovered rapidly after sample transfer from the storage to the sample chamber. Hence, this tin-based alloy is suitable for sample mounting for SIMS volatile and isotope (incl. U–Pb) analyses.</p>","PeriodicalId":81,"journal":{"name":"Journal of Analytical Atomic Spectrometry","volume":" 12","pages":" 2974-2981"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Pb-free Sn–Bi alloy mount preparation method for secondary ion mass spectrometry (SIMS) analyses†\",\"authors\":\"Wan-Feng Zhang, Qing Yang, Xiao-Ping Xia, De-Wen Zheng, Ze-Xian Cui, Yan-Qiang Zhang and Yi-Gang Xu\",\"doi\":\"10.1039/D4JA00252K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Sample preparation is a critical step to achieve reliable <em>in situ</em> chemical analysis. Sample mounting technique with a tin-based alloy was developed in recent years, which is particularly useful for high-precision volatile analyses by secondary ion mass spectrometry (SIMS). However, the success of this technique is hindered by challenges, such as complex alloy preparation and potential Pb contamination. Herein, we introduce a new Sn–Bi alloy preparation method that may overcome these hurdles and assess its potential as a standard preparation method for <em>in situ</em> volatile and isotope analyses. This new alloy can be manufactured with commercially available pure tin and bismuth metal (atomic Sn : Bi = 42 : 58), and its production requires only a heating plate and clean containers. This ensures its high accessibility to laboratories worldwide. The Pb content of the alloy is dependent on the tin and bismuth used. The material (Sn and Bi) from three different manufacturers were evaluated in this study, resulting in the virtually Pb-free MAC alloy (Pb &lt;0.2 μg g<small><sup>−1</sup></small>). The SIMS U–Pb dating results of the zircon standards (Qinghu, Plešovice, and SA01) are consistent with the recommended values (within error). Furthermore, the mounted samples exhibit satisfactory relief on this alloy, suggesting that this alloy material is appropriate for the analysis of oxygen isotopes. The routine external precision of oxygen isotope ratios is better than 0.30‰ (2sd), on par with that obtained with epoxy mounts. The water background in the SIMS sample chamber can be recovered rapidly after sample transfer from the storage to the sample chamber. Hence, this tin-based alloy is suitable for sample mounting for SIMS volatile and isotope (incl. U–Pb) analyses.</p>\",\"PeriodicalId\":81,\"journal\":{\"name\":\"Journal of Analytical Atomic Spectrometry\",\"volume\":\" 12\",\"pages\":\" 2974-2981\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Analytical Atomic Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ja/d4ja00252k\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Atomic Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ja/d4ja00252k","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

样品制备是实现可靠的原位化学分析的关键步骤。近年来开发的锡基合金样品安装技术特别适用于利用二次离子质谱(SIMS)进行高精度挥发性分析。然而,复杂的合金制备和潜在的铅污染等挑战阻碍了这一技术的成功。在此,我们介绍了一种新的锡铋合金制备方法,该方法可以克服这些障碍,并评估了其作为原位挥发物和同位素分析的标准制备方法的潜力。这种新合金可以用市面上的纯锡和铋金属(原子序数为 Sn : Bi = 42 : 58)制造,生产时只需要加热板和干净的容器。这就确保了它对全球实验室的高度易用性。合金中的铅含量取决于所用的锡和铋。本研究对三家不同制造商的材料(锡和铋)进行了评估,最终得出了几乎不含 Pb 的 MAC 合金(Pb <0.2 μg g-1)。锆石标准样品(Qinghu、Plešovice 和 SA01)的 SIMS U-Pb 测定结果与推荐值一致(误差在以内)。此外,安装好的样品在这种合金上表现出令人满意的浮雕效果,表明这种合金材料适合于氧同位素分析。氧同位素比值的常规外部精度优于 0.30‰(2sd),与环氧树脂镶样获得的精度相当。样品从贮藏室转移到样品室后,SIMS 样品室中的水背景可迅速恢复。因此,这种锡基合金适用于 SIMS 挥发性和同位素(包括铀-铅)分析的样品安装。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Pb-free Sn–Bi alloy mount preparation method for secondary ion mass spectrometry (SIMS) analyses†

Sample preparation is a critical step to achieve reliable in situ chemical analysis. Sample mounting technique with a tin-based alloy was developed in recent years, which is particularly useful for high-precision volatile analyses by secondary ion mass spectrometry (SIMS). However, the success of this technique is hindered by challenges, such as complex alloy preparation and potential Pb contamination. Herein, we introduce a new Sn–Bi alloy preparation method that may overcome these hurdles and assess its potential as a standard preparation method for in situ volatile and isotope analyses. This new alloy can be manufactured with commercially available pure tin and bismuth metal (atomic Sn : Bi = 42 : 58), and its production requires only a heating plate and clean containers. This ensures its high accessibility to laboratories worldwide. The Pb content of the alloy is dependent on the tin and bismuth used. The material (Sn and Bi) from three different manufacturers were evaluated in this study, resulting in the virtually Pb-free MAC alloy (Pb <0.2 μg g−1). The SIMS U–Pb dating results of the zircon standards (Qinghu, Plešovice, and SA01) are consistent with the recommended values (within error). Furthermore, the mounted samples exhibit satisfactory relief on this alloy, suggesting that this alloy material is appropriate for the analysis of oxygen isotopes. The routine external precision of oxygen isotope ratios is better than 0.30‰ (2sd), on par with that obtained with epoxy mounts. The water background in the SIMS sample chamber can be recovered rapidly after sample transfer from the storage to the sample chamber. Hence, this tin-based alloy is suitable for sample mounting for SIMS volatile and isotope (incl. U–Pb) analyses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
26.50%
发文量
228
审稿时长
1.7 months
期刊介绍: Innovative research on the fundamental theory and application of spectrometric techniques.
期刊最新文献
Back cover Laser-induced breakdown spectroscopy (LIBS): calibration challenges, combination with other techniques, and spectral analysis using data science High-precision MC-ICP-MS measurements of Cd isotopes using a novel double spike method without Sn isobaric interference† Magneto-electrical fusion enhancement of LIBS signals: a case of Al and Fe emission lines' characteristic analysis in soil Sensitive and rapid determination of the iodine/calcium ratio in carbonate rock samples by ICP-MS based on solution cathode glow discharge sampling†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1