{"title":"布莱恩-切恩-西蒙斯大质量引力的宇宙学影响","authors":"S. Kazempour, A. R. Akbarieh","doi":"10.1007/JHEP11(2024)135","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present a novel extension of massive gravity theory; the Brane-Chern-Simons massive gravity theory. We explore the cosmological implications of this theory by deriving the background equations and demonstrating the existence of self-accelerating solutions. Interestingly, our theory suggests the existence of self-accelerating mechanisms that originate from an effective cosmological constant, leading to intriguing possibilities for understanding the nature of cosmic acceleration. Furthermore, we perform a tensor perturbation analysis to investigate the propagation of gravitational waves in this framework. We derive the dispersion relation for gravitational waves and study their behavior in the Friedmann-Lemaître-Robertson-Walker cosmology within the context of Brane-Chern-Simons massive gravity.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)135.pdf","citationCount":"0","resultStr":"{\"title\":\"The cosmological impact of Brane-Chern-Simons massive gravity\",\"authors\":\"S. Kazempour, A. R. Akbarieh\",\"doi\":\"10.1007/JHEP11(2024)135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we present a novel extension of massive gravity theory; the Brane-Chern-Simons massive gravity theory. We explore the cosmological implications of this theory by deriving the background equations and demonstrating the existence of self-accelerating solutions. Interestingly, our theory suggests the existence of self-accelerating mechanisms that originate from an effective cosmological constant, leading to intriguing possibilities for understanding the nature of cosmic acceleration. Furthermore, we perform a tensor perturbation analysis to investigate the propagation of gravitational waves in this framework. We derive the dispersion relation for gravitational waves and study their behavior in the Friedmann-Lemaître-Robertson-Walker cosmology within the context of Brane-Chern-Simons massive gravity.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2024 11\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)135.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP11(2024)135\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP11(2024)135","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
The cosmological impact of Brane-Chern-Simons massive gravity
In this paper, we present a novel extension of massive gravity theory; the Brane-Chern-Simons massive gravity theory. We explore the cosmological implications of this theory by deriving the background equations and demonstrating the existence of self-accelerating solutions. Interestingly, our theory suggests the existence of self-accelerating mechanisms that originate from an effective cosmological constant, leading to intriguing possibilities for understanding the nature of cosmic acceleration. Furthermore, we perform a tensor perturbation analysis to investigate the propagation of gravitational waves in this framework. We derive the dispersion relation for gravitational waves and study their behavior in the Friedmann-Lemaître-Robertson-Walker cosmology within the context of Brane-Chern-Simons massive gravity.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).