基于岩体结构特征的破碎岩体数字化特征和等效力学参数

IF 3.7 2区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL Bulletin of Engineering Geology and the Environment Pub Date : 2024-11-26 DOI:10.1007/s10064-024-04020-1
Xiao Huang, Guoxiong Mei, Jinbao Wang, Chong Shi
{"title":"基于岩体结构特征的破碎岩体数字化特征和等效力学参数","authors":"Xiao Huang,&nbsp;Guoxiong Mei,&nbsp;Jinbao Wang,&nbsp;Chong Shi","doi":"10.1007/s10064-024-04020-1","DOIUrl":null,"url":null,"abstract":"<div><p>The digital representation, representative elementary volume (REV), and mechanical parameters of broken rock masses are essential foundations for simulating and studying the mechanical properties and behaviors of broken rock masses. Taking the broken surrounding rock of the main powerhouse of the Liyang pumped storage power station as the research subject, an equivalent rock mass model was constructed using equivalent rock mass techniques. Through a series of numerical tests, the REV size and equivalent mechanical parameters of the broken rock mass under various factors were investigated. The results indicate that the REV size of the broken surrounding rock of the main powerhouse, determined based on the equivalent cylindrical rock mass model, is 5 m × 10 m. The broken rock mass with a friction angle of structural planes lower than 30° exhibits brittle failure after reaching the uniaxial peak stress. As the number of fractures within the rock mass increases, the equivalent mechanical parameters of the rock mass show a decreasing trend, and the degree of dispersion of the mechanical parameters increases. Furthermore, the ratio of structural surface trace length to spacing was proposed as a classification criterion for broken surrounding rock, and a range of mechanical parameters for different types of broken rock masses was provided. This study offers important references for the numerical calculations of the mechanical behavior of broken rock masses.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"83 12","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Digital characterization and equivalent mechanical parameters of broken rock mass based on structural characteristics of rock mass\",\"authors\":\"Xiao Huang,&nbsp;Guoxiong Mei,&nbsp;Jinbao Wang,&nbsp;Chong Shi\",\"doi\":\"10.1007/s10064-024-04020-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The digital representation, representative elementary volume (REV), and mechanical parameters of broken rock masses are essential foundations for simulating and studying the mechanical properties and behaviors of broken rock masses. Taking the broken surrounding rock of the main powerhouse of the Liyang pumped storage power station as the research subject, an equivalent rock mass model was constructed using equivalent rock mass techniques. Through a series of numerical tests, the REV size and equivalent mechanical parameters of the broken rock mass under various factors were investigated. The results indicate that the REV size of the broken surrounding rock of the main powerhouse, determined based on the equivalent cylindrical rock mass model, is 5 m × 10 m. The broken rock mass with a friction angle of structural planes lower than 30° exhibits brittle failure after reaching the uniaxial peak stress. As the number of fractures within the rock mass increases, the equivalent mechanical parameters of the rock mass show a decreasing trend, and the degree of dispersion of the mechanical parameters increases. Furthermore, the ratio of structural surface trace length to spacing was proposed as a classification criterion for broken surrounding rock, and a range of mechanical parameters for different types of broken rock masses was provided. This study offers important references for the numerical calculations of the mechanical behavior of broken rock masses.</p></div>\",\"PeriodicalId\":500,\"journal\":{\"name\":\"Bulletin of Engineering Geology and the Environment\",\"volume\":\"83 12\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Engineering Geology and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10064-024-04020-1\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-024-04020-1","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

破碎岩体的数字化表示、代表性基本体积(REV)和力学参数是模拟和研究破碎岩体力学性质和行为的重要基础。以溧阳抽水蓄能电站主厂房破碎围岩为研究对象,利用等效岩体技术构建了等效岩体模型。通过一系列数值试验,研究了不同因素作用下破碎岩体的 REV 尺寸和等效力学参数。结果表明,根据等效圆柱岩体模型确定的主电站破损围岩的 REV 尺寸为 5 m × 10 m,结构平面摩擦角小于 30°的破损岩体在达到单轴峰值应力后表现为脆性破坏。随着岩体内部断裂数量的增加,岩体的等效力学参数呈下降趋势,力学参数的分散程度增加。此外,还提出了结构面痕迹长度与间距之比作为破碎围岩的分类标准,并提供了不同类型破碎岩体的力学参数范围。该研究为破碎岩体力学行为的数值计算提供了重要参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Digital characterization and equivalent mechanical parameters of broken rock mass based on structural characteristics of rock mass

The digital representation, representative elementary volume (REV), and mechanical parameters of broken rock masses are essential foundations for simulating and studying the mechanical properties and behaviors of broken rock masses. Taking the broken surrounding rock of the main powerhouse of the Liyang pumped storage power station as the research subject, an equivalent rock mass model was constructed using equivalent rock mass techniques. Through a series of numerical tests, the REV size and equivalent mechanical parameters of the broken rock mass under various factors were investigated. The results indicate that the REV size of the broken surrounding rock of the main powerhouse, determined based on the equivalent cylindrical rock mass model, is 5 m × 10 m. The broken rock mass with a friction angle of structural planes lower than 30° exhibits brittle failure after reaching the uniaxial peak stress. As the number of fractures within the rock mass increases, the equivalent mechanical parameters of the rock mass show a decreasing trend, and the degree of dispersion of the mechanical parameters increases. Furthermore, the ratio of structural surface trace length to spacing was proposed as a classification criterion for broken surrounding rock, and a range of mechanical parameters for different types of broken rock masses was provided. This study offers important references for the numerical calculations of the mechanical behavior of broken rock masses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of Engineering Geology and the Environment
Bulletin of Engineering Geology and the Environment 工程技术-地球科学综合
CiteScore
7.10
自引率
11.90%
发文量
445
审稿时长
4.1 months
期刊介绍: Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces: • the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations; • the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change; • the assessment of the mechanical and hydrological behaviour of soil and rock masses; • the prediction of changes to the above properties with time; • the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.
期刊最新文献
An improved buffer-controlled sampling strategy for landslide susceptibility assessment considering the spatial heterogeneity of conditioning factors Study of soil strength variation patterns under temperature changes using piezoelectric testing technology Effects of fine content on the mechanical properties and breakage behavior of gap-graded coral sand Model for quality classification of dam foundation rock mass based on Gaussian function weighted KNN algorithm and its application Large-scale field model testing of the effects of soft rock water content on the bearing performance of tunnel-type anchorages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1