{"title":"基于模型的聚苯乙烯颗粒分离压电微流控装置研究","authors":"Wenbo Han, Hongyuan Zou, Yiwen Zheng, Yu Liu, Xin Wang, Wei Li, Yuqing Sun, Hongpeng Zhang","doi":"10.1007/s12217-024-10150-8","DOIUrl":null,"url":null,"abstract":"<div><p>Particle separation holds great significance as it has the potential to enhance product quality, efficiency, and safety across various industries by selectively sorting particles based on their specific characteristics. This, in turn, contributes to the improvement of processes in areas such as product manufacturing, environmental protection, and resource extraction. This paper proposes a novel microfluidic platform employing dielectrophoresis (DEP) principles to achieve the sorting of particles based on their size. This methodology leverages the dielectric characteristics of polystyrene particles. By manipulating various control parameters, such as electrode shapes (planar, V-shaped, and sinusoidal), the alteration of angles within the same electrode shape, adjustments in electrode widths, and electrode quantity. The study utilizes numerical simulation to compute the spatial distribution of the electric field within the microfluidic chip and predict the trajectories of particles within the microfluidic channel. Through quantitative comparison and analysis, a more optimized microfluidic chip with smaller size and shorter time, capable of effectively separating particles, is ultimately presented.</p></div>","PeriodicalId":707,"journal":{"name":"Microgravity Science and Technology","volume":"36 6","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model-Based Investigation of a Dielectrophoretic Microfluidic Device for the Separation of Polystyrene Particles\",\"authors\":\"Wenbo Han, Hongyuan Zou, Yiwen Zheng, Yu Liu, Xin Wang, Wei Li, Yuqing Sun, Hongpeng Zhang\",\"doi\":\"10.1007/s12217-024-10150-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Particle separation holds great significance as it has the potential to enhance product quality, efficiency, and safety across various industries by selectively sorting particles based on their specific characteristics. This, in turn, contributes to the improvement of processes in areas such as product manufacturing, environmental protection, and resource extraction. This paper proposes a novel microfluidic platform employing dielectrophoresis (DEP) principles to achieve the sorting of particles based on their size. This methodology leverages the dielectric characteristics of polystyrene particles. By manipulating various control parameters, such as electrode shapes (planar, V-shaped, and sinusoidal), the alteration of angles within the same electrode shape, adjustments in electrode widths, and electrode quantity. The study utilizes numerical simulation to compute the spatial distribution of the electric field within the microfluidic chip and predict the trajectories of particles within the microfluidic channel. Through quantitative comparison and analysis, a more optimized microfluidic chip with smaller size and shorter time, capable of effectively separating particles, is ultimately presented.</p></div>\",\"PeriodicalId\":707,\"journal\":{\"name\":\"Microgravity Science and Technology\",\"volume\":\"36 6\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microgravity Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12217-024-10150-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microgravity Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12217-024-10150-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Model-Based Investigation of a Dielectrophoretic Microfluidic Device for the Separation of Polystyrene Particles
Particle separation holds great significance as it has the potential to enhance product quality, efficiency, and safety across various industries by selectively sorting particles based on their specific characteristics. This, in turn, contributes to the improvement of processes in areas such as product manufacturing, environmental protection, and resource extraction. This paper proposes a novel microfluidic platform employing dielectrophoresis (DEP) principles to achieve the sorting of particles based on their size. This methodology leverages the dielectric characteristics of polystyrene particles. By manipulating various control parameters, such as electrode shapes (planar, V-shaped, and sinusoidal), the alteration of angles within the same electrode shape, adjustments in electrode widths, and electrode quantity. The study utilizes numerical simulation to compute the spatial distribution of the electric field within the microfluidic chip and predict the trajectories of particles within the microfluidic channel. Through quantitative comparison and analysis, a more optimized microfluidic chip with smaller size and shorter time, capable of effectively separating particles, is ultimately presented.
期刊介绍:
Microgravity Science and Technology – An International Journal for Microgravity and Space Exploration Related Research is a is a peer-reviewed scientific journal concerned with all topics, experimental as well as theoretical, related to research carried out under conditions of altered gravity.
Microgravity Science and Technology publishes papers dealing with studies performed on and prepared for platforms that provide real microgravity conditions (such as drop towers, parabolic flights, sounding rockets, reentry capsules and orbiting platforms), and on ground-based facilities aiming to simulate microgravity conditions on earth (such as levitrons, clinostats, random positioning machines, bed rest facilities, and micro-scale or neutral buoyancy facilities) or providing artificial gravity conditions (such as centrifuges).
Data from preparatory tests, hardware and instrumentation developments, lessons learnt as well as theoretical gravity-related considerations are welcome. Included science disciplines with gravity-related topics are:
− materials science
− fluid mechanics
− process engineering
− physics
− chemistry
− heat and mass transfer
− gravitational biology
− radiation biology
− exobiology and astrobiology
− human physiology