量化面内应变对二硫化钼二次谐波产生的影响

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Communications Physics Pub Date : 2024-11-24 DOI:10.1038/s42005-024-01877-2
Huadan Xing, Jibin Liu, Zihao Zhao, Xiaoyong He, Wei Qiu
{"title":"量化面内应变对二硫化钼二次谐波产生的影响","authors":"Huadan Xing, Jibin Liu, Zihao Zhao, Xiaoyong He, Wei Qiu","doi":"10.1038/s42005-024-01877-2","DOIUrl":null,"url":null,"abstract":"Quantifying the strain, and even the strain state, is critical for the advancement of strain engineering in microelectronics and optoelectronics fields, whether using the classical semiconductors or emerging two-dimensional materials. Second Harmonic Generation (SHG) has emerged as a potent technique for exploring the optical-mechanical properties of two-dimensional transition metal dichalcogenides (2D-TMDCs). Based on the theoretical framework of SHG, this work analyses the mechanism of different strain states acting on the SHG polarization-intensity spectrum (PIS) of MoS2. A quantifying method is proposed by establishing the analytic relationship between the in-plane strain components and the petal amplitude ratios (PARs) obtained from detected PIS. After calibrating the key parameters of MoS2 SHG PIS, a series of biaxial and uniaxial tensile experiments are performed, whose results are mostly agreed with the theoretical expectations, thus verifying the reliability, correctness and universality of the proposed method for quantitively characterizing the strain state of monolayer MoS2. Second Harmonic Generation (SHG) is potent for exploring the optical-mechanical properties of two-dimensional transition metal dichalcogenides. This work presents a method to quantify the strain state influence on the SHG polarization-intensity spectrum of MoS2, and the reliability of proposed method is verified by numerical and physical experiments.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-10"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01877-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Quantifying the in-plane strain influence on second harmonic generation of molybdenum disulfide\",\"authors\":\"Huadan Xing, Jibin Liu, Zihao Zhao, Xiaoyong He, Wei Qiu\",\"doi\":\"10.1038/s42005-024-01877-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantifying the strain, and even the strain state, is critical for the advancement of strain engineering in microelectronics and optoelectronics fields, whether using the classical semiconductors or emerging two-dimensional materials. Second Harmonic Generation (SHG) has emerged as a potent technique for exploring the optical-mechanical properties of two-dimensional transition metal dichalcogenides (2D-TMDCs). Based on the theoretical framework of SHG, this work analyses the mechanism of different strain states acting on the SHG polarization-intensity spectrum (PIS) of MoS2. A quantifying method is proposed by establishing the analytic relationship between the in-plane strain components and the petal amplitude ratios (PARs) obtained from detected PIS. After calibrating the key parameters of MoS2 SHG PIS, a series of biaxial and uniaxial tensile experiments are performed, whose results are mostly agreed with the theoretical expectations, thus verifying the reliability, correctness and universality of the proposed method for quantitively characterizing the strain state of monolayer MoS2. Second Harmonic Generation (SHG) is potent for exploring the optical-mechanical properties of two-dimensional transition metal dichalcogenides. This work presents a method to quantify the strain state influence on the SHG polarization-intensity spectrum of MoS2, and the reliability of proposed method is verified by numerical and physical experiments.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01877-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01877-2\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01877-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

无论是使用传统半导体还是新兴的二维材料,应变甚至应变状态的量化对于微电子学和光电子学领域应变工程的发展都至关重要。二次谐波发生(SHG)已成为探索二维过渡金属二卤化物(2D-TMDCs)光学机械特性的有效技术。本研究基于 SHG 的理论框架,分析了不同应变状态对 MoS2 的 SHG 偏振-强度谱 (PIS) 的作用机制。通过建立面内应变分量与从检测到的 PIS 中获得的花瓣振幅比之间的分析关系,提出了一种量化方法。在校准了 MoS2 SHG PIS 的关键参数后,进行了一系列双轴和单轴拉伸实验,其结果与理论预期基本一致,从而验证了所提出的方法在定量表征单层 MoS2 应变状态方面的可靠性、正确性和普遍性。二次谐波发生(SHG)是探索二维过渡金属二卤化物光学机械特性的有效方法。本研究提出了一种量化应变状态对 MoS2 的 SHG 偏振-强度谱影响的方法,并通过数值和物理实验验证了所提方法的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantifying the in-plane strain influence on second harmonic generation of molybdenum disulfide
Quantifying the strain, and even the strain state, is critical for the advancement of strain engineering in microelectronics and optoelectronics fields, whether using the classical semiconductors or emerging two-dimensional materials. Second Harmonic Generation (SHG) has emerged as a potent technique for exploring the optical-mechanical properties of two-dimensional transition metal dichalcogenides (2D-TMDCs). Based on the theoretical framework of SHG, this work analyses the mechanism of different strain states acting on the SHG polarization-intensity spectrum (PIS) of MoS2. A quantifying method is proposed by establishing the analytic relationship between the in-plane strain components and the petal amplitude ratios (PARs) obtained from detected PIS. After calibrating the key parameters of MoS2 SHG PIS, a series of biaxial and uniaxial tensile experiments are performed, whose results are mostly agreed with the theoretical expectations, thus verifying the reliability, correctness and universality of the proposed method for quantitively characterizing the strain state of monolayer MoS2. Second Harmonic Generation (SHG) is potent for exploring the optical-mechanical properties of two-dimensional transition metal dichalcogenides. This work presents a method to quantify the strain state influence on the SHG polarization-intensity spectrum of MoS2, and the reliability of proposed method is verified by numerical and physical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
期刊最新文献
Direct measurement of three different deformations near the ground state in an atomic nucleus. Elf autoencoder for unsupervised exploration of flat-band materials using electronic band structure fingerprints. Unraveling the role of gravity in shaping intruder dynamics within vibrated granular media One-third magnetization plateau in Quantum Kagome antiferromagnet Two-dimensional cooling without repump laser beams through ion motional heating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1