{"title":"随机非线性公共产品博弈中的进化动力学","authors":"Wenqiang Zhu, Xin Wang, Chaoqian Wang, Longzhao Liu, Jiaxin Hu, Zhiming Zheng, Shaoting Tang, Hongwei Zheng, Jin Dong","doi":"10.1038/s42005-024-01865-6","DOIUrl":null,"url":null,"abstract":"Understanding the evolution of cooperation in multi-player games is of vital significance for natural and social systems. An important challenge is that group interactions often lead to nonlinear synergistic effects. However, previous models mainly focus on deterministic nonlinearity, where synergy or discounting effects occur under specific conditions, not accounting for uncertainty and stochasticity in real-world systems. Here, we develop a probabilistic framework to study the cooperative behavior in stochastic nonlinear public goods games. Through both analytical treatment and Monte Carlo simulations, we provide a comprehensive understanding of social dilemmas with stochastic nonlinearity in both well-mixed and structured populations. We find that increasing the degree of nonlinearity makes synergy more advantageous when competing with discounting, thereby promoting cooperation. Furthermore, we show that network reciprocity loses effectiveness when the probability of synergy is small. Moreover, group size exhibits nonlinear effects on group cooperation regardless of the underlying structure. Our findings thus provide insights into how stochastic nonlinearity influences the emergence of prosocial behavior. Cooperation in multi-player games is influenced by nonlinear interactions and randomness found in natural and social systems. The authors develop a probabilistic framework and find that stronger nonlinear effects enhance cooperation by boosting the collective benefits of working together, and that network reciprocity loses effectiveness when synergistic interactions are rare.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-10"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01865-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Evolutionary dynamics in stochastic nonlinear public goods games\",\"authors\":\"Wenqiang Zhu, Xin Wang, Chaoqian Wang, Longzhao Liu, Jiaxin Hu, Zhiming Zheng, Shaoting Tang, Hongwei Zheng, Jin Dong\",\"doi\":\"10.1038/s42005-024-01865-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the evolution of cooperation in multi-player games is of vital significance for natural and social systems. An important challenge is that group interactions often lead to nonlinear synergistic effects. However, previous models mainly focus on deterministic nonlinearity, where synergy or discounting effects occur under specific conditions, not accounting for uncertainty and stochasticity in real-world systems. Here, we develop a probabilistic framework to study the cooperative behavior in stochastic nonlinear public goods games. Through both analytical treatment and Monte Carlo simulations, we provide a comprehensive understanding of social dilemmas with stochastic nonlinearity in both well-mixed and structured populations. We find that increasing the degree of nonlinearity makes synergy more advantageous when competing with discounting, thereby promoting cooperation. Furthermore, we show that network reciprocity loses effectiveness when the probability of synergy is small. Moreover, group size exhibits nonlinear effects on group cooperation regardless of the underlying structure. Our findings thus provide insights into how stochastic nonlinearity influences the emergence of prosocial behavior. Cooperation in multi-player games is influenced by nonlinear interactions and randomness found in natural and social systems. The authors develop a probabilistic framework and find that stronger nonlinear effects enhance cooperation by boosting the collective benefits of working together, and that network reciprocity loses effectiveness when synergistic interactions are rare.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01865-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01865-6\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01865-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Evolutionary dynamics in stochastic nonlinear public goods games
Understanding the evolution of cooperation in multi-player games is of vital significance for natural and social systems. An important challenge is that group interactions often lead to nonlinear synergistic effects. However, previous models mainly focus on deterministic nonlinearity, where synergy or discounting effects occur under specific conditions, not accounting for uncertainty and stochasticity in real-world systems. Here, we develop a probabilistic framework to study the cooperative behavior in stochastic nonlinear public goods games. Through both analytical treatment and Monte Carlo simulations, we provide a comprehensive understanding of social dilemmas with stochastic nonlinearity in both well-mixed and structured populations. We find that increasing the degree of nonlinearity makes synergy more advantageous when competing with discounting, thereby promoting cooperation. Furthermore, we show that network reciprocity loses effectiveness when the probability of synergy is small. Moreover, group size exhibits nonlinear effects on group cooperation regardless of the underlying structure. Our findings thus provide insights into how stochastic nonlinearity influences the emergence of prosocial behavior. Cooperation in multi-player games is influenced by nonlinear interactions and randomness found in natural and social systems. The authors develop a probabilistic framework and find that stronger nonlinear effects enhance cooperation by boosting the collective benefits of working together, and that network reciprocity loses effectiveness when synergistic interactions are rare.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.