用延续方法分析伊辛机解决问题的难度

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Communications Physics Pub Date : 2024-11-21 DOI:10.1038/s42005-024-01867-4
Jacob Lamers, Guy Verschaffelt, Guy Van der Sande
{"title":"用延续方法分析伊辛机解决问题的难度","authors":"Jacob Lamers, Guy Verschaffelt, Guy Van der Sande","doi":"10.1038/s42005-024-01867-4","DOIUrl":null,"url":null,"abstract":"Ising machines are dedicated hardware solvers of NP-hard optimization problems. However, they do not always find the most optimal solution. The probability of finding this optimal solution depends on the problem at hand. Using continuation methods, we show that this is closely linked to how the ground state emerges from other states when a system parameter is changed, i.e. its bifurcation sequence. From this analysis, we can determine the effectiveness of solution schemes. Moreover, we find that the proper choice of implementation of the Ising machine can drastically change this bifurcation sequence and therefore vastly increase the probability of finding the optimal solution. Lastly, we also show that continuation methods themselves can be used directly to solve optimization problems. An Ising machine is a piece of hardware that tries to solve quadratic unconstrained binary optimization problems. The authors explain why some problems are significantly easier to tackle than others using Ising machines and demonstrate that different physical implementations can render some challenging problems a lot easier to solve.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-11"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01867-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Using continuation methods to analyse the difficulty of problems solved by Ising machines\",\"authors\":\"Jacob Lamers, Guy Verschaffelt, Guy Van der Sande\",\"doi\":\"10.1038/s42005-024-01867-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ising machines are dedicated hardware solvers of NP-hard optimization problems. However, they do not always find the most optimal solution. The probability of finding this optimal solution depends on the problem at hand. Using continuation methods, we show that this is closely linked to how the ground state emerges from other states when a system parameter is changed, i.e. its bifurcation sequence. From this analysis, we can determine the effectiveness of solution schemes. Moreover, we find that the proper choice of implementation of the Ising machine can drastically change this bifurcation sequence and therefore vastly increase the probability of finding the optimal solution. Lastly, we also show that continuation methods themselves can be used directly to solve optimization problems. An Ising machine is a piece of hardware that tries to solve quadratic unconstrained binary optimization problems. The authors explain why some problems are significantly easier to tackle than others using Ising machines and demonstrate that different physical implementations can render some challenging problems a lot easier to solve.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01867-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01867-4\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01867-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

伊辛机是 NP 难优化问题的专用硬件求解器。然而,它们并不总能找到最优解。找到最优解的概率取决于手头的问题。通过使用延续方法,我们发现这与系统参数改变时地面状态如何从其他状态中产生密切相关,即系统的分岔序列。通过这一分析,我们可以确定求解方案的有效性。此外,我们还发现,选择合适的伊辛机实现方式可以极大地改变分岔序列,从而大大提高找到最优解的概率。最后,我们还证明了延续方法本身可以直接用于解决优化问题。伊辛机是一种尝试解决二次无约束二元优化问题的硬件。作者解释了为什么使用伊辛机解决某些问题比解决其他问题要容易得多,并证明了不同的物理实现可以使一些具有挑战性的问题变得更容易解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using continuation methods to analyse the difficulty of problems solved by Ising machines
Ising machines are dedicated hardware solvers of NP-hard optimization problems. However, they do not always find the most optimal solution. The probability of finding this optimal solution depends on the problem at hand. Using continuation methods, we show that this is closely linked to how the ground state emerges from other states when a system parameter is changed, i.e. its bifurcation sequence. From this analysis, we can determine the effectiveness of solution schemes. Moreover, we find that the proper choice of implementation of the Ising machine can drastically change this bifurcation sequence and therefore vastly increase the probability of finding the optimal solution. Lastly, we also show that continuation methods themselves can be used directly to solve optimization problems. An Ising machine is a piece of hardware that tries to solve quadratic unconstrained binary optimization problems. The authors explain why some problems are significantly easier to tackle than others using Ising machines and demonstrate that different physical implementations can render some challenging problems a lot easier to solve.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
期刊最新文献
Direct measurement of three different deformations near the ground state in an atomic nucleus. Unraveling the role of gravity in shaping intruder dynamics within vibrated granular media One-third magnetization plateau in Quantum Kagome antiferromagnet Two-dimensional cooling without repump laser beams through ion motional heating DarkSide-20k sensitivity to light dark matter particles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1