拥挤的三叉路口中认知型主动代理的定向运动

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Communications Physics Pub Date : 2024-11-22 DOI:10.1038/s42005-024-01860-x
Priyanka Iyer, Rajendra Singh Negi, Andreas Schadschneider, Gerhard Gompper
{"title":"拥挤的三叉路口中认知型主动代理的定向运动","authors":"Priyanka Iyer, Rajendra Singh Negi, Andreas Schadschneider, Gerhard Gompper","doi":"10.1038/s42005-024-01860-x","DOIUrl":null,"url":null,"abstract":"Understanding the navigation through semi-dense crowds at intersections poses a significant challenge in pedestrian dynamics, with implications for facility design and insights into emergent collective behavior. To tackle this problem, a system of cognitive active agents at a crowded three-way intersection is studied using Langevin simulations of intelligent active Brownian particles (iABPs) with directed visual perception (resulting in non-reciprocal interactions) and self-steering avoidance—without volume exclusion. We find that the emergent self-organization depends on agent maneuverability, goal fixation, and vision angle, and identify several forms of collective behavior, including localized flocking, jamming and percolation, and self-organized rotational flows. Additionally, we demonstrate that the motion of individual agents can be characterized by fractional Brownian motion and Lévy walk models across different parameter regimes. Moreover, despite the rich variety of collective behavior, the fundamental flow diagram shows a universal curve for different vision angles. Our research highlights the impact of collision avoidance, goal following, and vision angle on the individual and collective dynamics of interacting pedestrians. The study of self-organisation of pedestrian movement at crossing is important for the design of strategies facilitating pedestrian flow in crowded areas and the mitigation of crowd-related accidents. The authors study the motion of pedestrians using a model inspired from active matter systems finding interesting phases of three interacting streams of agents, including jamming, and the emergence of a vortex state.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-11"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01860-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Directed motion of cognitive active agents in a crowded three-way intersection\",\"authors\":\"Priyanka Iyer, Rajendra Singh Negi, Andreas Schadschneider, Gerhard Gompper\",\"doi\":\"10.1038/s42005-024-01860-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the navigation through semi-dense crowds at intersections poses a significant challenge in pedestrian dynamics, with implications for facility design and insights into emergent collective behavior. To tackle this problem, a system of cognitive active agents at a crowded three-way intersection is studied using Langevin simulations of intelligent active Brownian particles (iABPs) with directed visual perception (resulting in non-reciprocal interactions) and self-steering avoidance—without volume exclusion. We find that the emergent self-organization depends on agent maneuverability, goal fixation, and vision angle, and identify several forms of collective behavior, including localized flocking, jamming and percolation, and self-organized rotational flows. Additionally, we demonstrate that the motion of individual agents can be characterized by fractional Brownian motion and Lévy walk models across different parameter regimes. Moreover, despite the rich variety of collective behavior, the fundamental flow diagram shows a universal curve for different vision angles. Our research highlights the impact of collision avoidance, goal following, and vision angle on the individual and collective dynamics of interacting pedestrians. The study of self-organisation of pedestrian movement at crossing is important for the design of strategies facilitating pedestrian flow in crowded areas and the mitigation of crowd-related accidents. The authors study the motion of pedestrians using a model inspired from active matter systems finding interesting phases of three interacting streams of agents, including jamming, and the emergence of a vortex state.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01860-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01860-x\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01860-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

理解在十字路口半密集人群中的导航是行人动力学中的一个重大挑战,对设施设计和深入了解突发集体行为都有影响。为了解决这个问题,我们利用具有定向视觉感知(导致非互惠互动)和自转向规避(无体积排斥)的智能主动布朗粒子(iABPs)的朗格文模拟,对拥挤的三叉路口的认知主动代理系统进行了研究。我们发现,新出现的自组织取决于代理的可操作性、目标固定和视觉角度,并确定了几种形式的集体行为,包括局部成群、干扰和渗透以及自组织旋转流。此外,我们还证明,个体代理的运动可以用分数布朗运动和莱维漫步模型来描述,并跨越不同的参数区。此外,尽管集体行为种类繁多,但基本流图显示了不同视角下的通用曲线。我们的研究强调了避免碰撞、目标追随和视觉角度对相互作用的行人的个体和集体动力学的影响。研究行人在过马路时的自组织运动对于设计在拥挤区域促进行人流动的策略和减少与人群相关的事故非常重要。作者利用一个受主动物质系统启发的模型对行人的运动进行了研究,发现了三个相互作用的代理流的有趣阶段,包括干扰和涡流状态的出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Directed motion of cognitive active agents in a crowded three-way intersection
Understanding the navigation through semi-dense crowds at intersections poses a significant challenge in pedestrian dynamics, with implications for facility design and insights into emergent collective behavior. To tackle this problem, a system of cognitive active agents at a crowded three-way intersection is studied using Langevin simulations of intelligent active Brownian particles (iABPs) with directed visual perception (resulting in non-reciprocal interactions) and self-steering avoidance—without volume exclusion. We find that the emergent self-organization depends on agent maneuverability, goal fixation, and vision angle, and identify several forms of collective behavior, including localized flocking, jamming and percolation, and self-organized rotational flows. Additionally, we demonstrate that the motion of individual agents can be characterized by fractional Brownian motion and Lévy walk models across different parameter regimes. Moreover, despite the rich variety of collective behavior, the fundamental flow diagram shows a universal curve for different vision angles. Our research highlights the impact of collision avoidance, goal following, and vision angle on the individual and collective dynamics of interacting pedestrians. The study of self-organisation of pedestrian movement at crossing is important for the design of strategies facilitating pedestrian flow in crowded areas and the mitigation of crowd-related accidents. The authors study the motion of pedestrians using a model inspired from active matter systems finding interesting phases of three interacting streams of agents, including jamming, and the emergence of a vortex state.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
期刊最新文献
Direct measurement of three different deformations near the ground state in an atomic nucleus. Unraveling the role of gravity in shaping intruder dynamics within vibrated granular media One-third magnetization plateau in Quantum Kagome antiferromagnet Two-dimensional cooling without repump laser beams through ion motional heating DarkSide-20k sensitivity to light dark matter particles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1