通过无溶剂共夹杂电解质设计实现长寿命石墨-硫化锂全电池。

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Horizons Pub Date : 2024-11-26 DOI:10.1039/d4mh01287a
Tianxing Lai, Amruth Bhargav, Seth Reed, Arumugam Manthiram
{"title":"通过无溶剂共夹杂电解质设计实现长寿命石墨-硫化锂全电池。","authors":"Tianxing Lai, Amruth Bhargav, Seth Reed, Arumugam Manthiram","doi":"10.1039/d4mh01287a","DOIUrl":null,"url":null,"abstract":"<p><p>Graphite (Gr) is the predominant anode material for current lithium-ion technologies. The Gr anode could offer a practical pathway for the development of lithium-sulfur (Li-S) batteries due to its superior stability and safety compared to Li-metal. However, Gr anodes are not compatible with the conventional dilute ether-based electrolytes typically used in Li-S systems. Here, an optimized ether electrolyte is presented, utilizing 1 M lithium bis(trifluoromethanesulfonyl)-imide (LiTFSI) in 1,3-dioxolane (DOL)/1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropylether (TTE). Without altering the salt concentration, this electrolyte regulates the solvation structure and promotes the formation of a robust solid-electrolyte interphase (SEI) layer, leading to a significant improvement in the cyclability of Gr anodes. Meanwhile, the DOL/TTE electrolyte maintains adequate kinetics for the sulfur cathode, enabling its pairing with Gr anodes without any cathode modification. The cell with a Gr anode delivers a reversible discharge capacity of 515 mA h g<sup>-1</sup> after 400 cycles at C/10 rate, in contrast to only 143 mA h g<sup>-1</sup> for the Li-metal anode cell. Moreover, a Gr || Li<sub>2</sub>S full cell with a negative-to-positive capacity (N/P) ratio of 1.05 and a Li<sub>2</sub>S loading of 3 mg cm<sup>-2</sup> shows a stable 58% capacity retention after 400 cycles.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-life graphite-lithium sulfide full cells enabled through a solvent Co-intercalation-free electrolyte design.\",\"authors\":\"Tianxing Lai, Amruth Bhargav, Seth Reed, Arumugam Manthiram\",\"doi\":\"10.1039/d4mh01287a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Graphite (Gr) is the predominant anode material for current lithium-ion technologies. The Gr anode could offer a practical pathway for the development of lithium-sulfur (Li-S) batteries due to its superior stability and safety compared to Li-metal. However, Gr anodes are not compatible with the conventional dilute ether-based electrolytes typically used in Li-S systems. Here, an optimized ether electrolyte is presented, utilizing 1 M lithium bis(trifluoromethanesulfonyl)-imide (LiTFSI) in 1,3-dioxolane (DOL)/1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropylether (TTE). Without altering the salt concentration, this electrolyte regulates the solvation structure and promotes the formation of a robust solid-electrolyte interphase (SEI) layer, leading to a significant improvement in the cyclability of Gr anodes. Meanwhile, the DOL/TTE electrolyte maintains adequate kinetics for the sulfur cathode, enabling its pairing with Gr anodes without any cathode modification. The cell with a Gr anode delivers a reversible discharge capacity of 515 mA h g<sup>-1</sup> after 400 cycles at C/10 rate, in contrast to only 143 mA h g<sup>-1</sup> for the Li-metal anode cell. Moreover, a Gr || Li<sub>2</sub>S full cell with a negative-to-positive capacity (N/P) ratio of 1.05 and a Li<sub>2</sub>S loading of 3 mg cm<sup>-2</sup> shows a stable 58% capacity retention after 400 cycles.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4mh01287a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01287a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

石墨(Gr)是当前锂离子技术的主要负极材料。与锂金属相比,石墨负极具有更高的稳定性和安全性,可为锂硫(Li-S)电池的开发提供切实可行的途径。然而,Gr 阳极与锂-S 系统中通常使用的传统稀醚基电解质不兼容。本文介绍了一种优化的醚电解质,即在 1,3-二氧戊环(DOL)/1,1,2,2-四氟乙基 2,2,3,3-四氟丙基醚(TTE)中使用 1 M 双(三氟甲烷磺酰基)亚胺锂(LiTFSI)。在不改变盐浓度的情况下,这种电解质可以调节溶解结构,促进形成坚固的固体-电解质相间层(SEI),从而显著提高 Gr 阳极的循环能力。同时,DOL/TTE 电解质还能为硫阴极保持足够的动力学性能,使其能够与 Gr 阳极配对,而无需对阴极进行任何改动。使用 Gr 阳极的电池在 C/10 速率下循环 400 次后,可实现 515 mA h g-1 的可逆放电容量,而使用锂金属阳极的电池仅为 143 mA h g-1。此外,负极与正极容量(N/P)比为 1.05、Li2S 负载为 3 mg cm-2 的 Gr || Li2S 全电池在 400 次循环后显示出稳定的 58% 容量保持率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Long-life graphite-lithium sulfide full cells enabled through a solvent Co-intercalation-free electrolyte design.

Graphite (Gr) is the predominant anode material for current lithium-ion technologies. The Gr anode could offer a practical pathway for the development of lithium-sulfur (Li-S) batteries due to its superior stability and safety compared to Li-metal. However, Gr anodes are not compatible with the conventional dilute ether-based electrolytes typically used in Li-S systems. Here, an optimized ether electrolyte is presented, utilizing 1 M lithium bis(trifluoromethanesulfonyl)-imide (LiTFSI) in 1,3-dioxolane (DOL)/1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropylether (TTE). Without altering the salt concentration, this electrolyte regulates the solvation structure and promotes the formation of a robust solid-electrolyte interphase (SEI) layer, leading to a significant improvement in the cyclability of Gr anodes. Meanwhile, the DOL/TTE electrolyte maintains adequate kinetics for the sulfur cathode, enabling its pairing with Gr anodes without any cathode modification. The cell with a Gr anode delivers a reversible discharge capacity of 515 mA h g-1 after 400 cycles at C/10 rate, in contrast to only 143 mA h g-1 for the Li-metal anode cell. Moreover, a Gr || Li2S full cell with a negative-to-positive capacity (N/P) ratio of 1.05 and a Li2S loading of 3 mg cm-2 shows a stable 58% capacity retention after 400 cycles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
期刊最新文献
Functionalization of monolithic MOF thin films with hydrocarbon chains to achieve superhydrophobic surfaces with tunable water adhesion strength. Long-life graphite-lithium sulfide full cells enabled through a solvent Co-intercalation-free electrolyte design. Stabilizing molecular catalysts on metal oxide surfaces using molecular layer deposition for efficient water oxidation. Studies of the mechanically induced reactivity of graphene with water using a 2D-materials strain reactor. Inside back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1