Meaghan K McGeary, William Damsky, Andrew J Daniels, Sabine M Lang, Qingji Xu, Eric Song, Clotilde Huet-Calderwood, Hua Jane Lou, Sateja Paradkar, Goran Micevic, Susan M Kaech, David A Calderwood, Benjamin E Turk, Qin Yan, Akiko Iwasaki, Marcus W Bosenberg
{"title":"Setdb1-loss可诱导I型干扰素和黑色素瘤的免疫清除。","authors":"Meaghan K McGeary, William Damsky, Andrew J Daniels, Sabine M Lang, Qingji Xu, Eric Song, Clotilde Huet-Calderwood, Hua Jane Lou, Sateja Paradkar, Goran Micevic, Susan M Kaech, David A Calderwood, Benjamin E Turk, Qin Yan, Akiko Iwasaki, Marcus W Bosenberg","doi":"10.1158/2326-6066.CIR-23-0514","DOIUrl":null,"url":null,"abstract":"<p><p>Despite recent advances in the treatment of melanoma, many patients with metastatic disease still succumb to their disease. To identify tumor-intrinsic modulators of immunity to melanoma, we performed a whole-genome CRISPR screen in melanoma and identified Setdb1 as well as all components of the HUSH complex. We found that loss of Setdb1 leads to increased immunogenicity and complete tumor clearance in a CD8+ T-cell dependent manner. Mechanistically, loss of Setdb1 causes de-repression of endogenous retroviruses (ERVs) in melanoma cells and triggers tumor-cell intrinsic type-I interferon signaling, upregulation of MHC-I expression, and increased CD8+ T-cell infiltration. Importantly, spontaneous immune clearance observed in Setdb1-/- tumors results in subsequent protection from other ERV-expressing tumor lines, supporting the functional anti-tumor role of ERV-specific CD8+ T-cells found in the Setdb1-/- microenvironment. Blocking the type-I interferon receptor in mice grafted with Setdb1-/- tumors decreases immunogenicity by decreasing MHC-I expression, leading to decreased T-cell infiltration and increased melanoma growth, comparable to Setdb1wt tumors. Together, these results provide key in vivo evidence of a critical role for Setdb1 and type-I interferons in generating an inflamed tumor microenvironment, and potentiating tumor-cell intrinsic immunogenicity in melanoma. This study further emphasizes regulators of ERV expression and type-I interferon expression as potential therapeutic targets for augmenting anti-cancer immune responses.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Setdb1-loss induces type-I interferons and immune clearance of melanoma.\",\"authors\":\"Meaghan K McGeary, William Damsky, Andrew J Daniels, Sabine M Lang, Qingji Xu, Eric Song, Clotilde Huet-Calderwood, Hua Jane Lou, Sateja Paradkar, Goran Micevic, Susan M Kaech, David A Calderwood, Benjamin E Turk, Qin Yan, Akiko Iwasaki, Marcus W Bosenberg\",\"doi\":\"10.1158/2326-6066.CIR-23-0514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite recent advances in the treatment of melanoma, many patients with metastatic disease still succumb to their disease. To identify tumor-intrinsic modulators of immunity to melanoma, we performed a whole-genome CRISPR screen in melanoma and identified Setdb1 as well as all components of the HUSH complex. We found that loss of Setdb1 leads to increased immunogenicity and complete tumor clearance in a CD8+ T-cell dependent manner. Mechanistically, loss of Setdb1 causes de-repression of endogenous retroviruses (ERVs) in melanoma cells and triggers tumor-cell intrinsic type-I interferon signaling, upregulation of MHC-I expression, and increased CD8+ T-cell infiltration. Importantly, spontaneous immune clearance observed in Setdb1-/- tumors results in subsequent protection from other ERV-expressing tumor lines, supporting the functional anti-tumor role of ERV-specific CD8+ T-cells found in the Setdb1-/- microenvironment. Blocking the type-I interferon receptor in mice grafted with Setdb1-/- tumors decreases immunogenicity by decreasing MHC-I expression, leading to decreased T-cell infiltration and increased melanoma growth, comparable to Setdb1wt tumors. Together, these results provide key in vivo evidence of a critical role for Setdb1 and type-I interferons in generating an inflamed tumor microenvironment, and potentiating tumor-cell intrinsic immunogenicity in melanoma. This study further emphasizes regulators of ERV expression and type-I interferon expression as potential therapeutic targets for augmenting anti-cancer immune responses.</p>\",\"PeriodicalId\":9474,\"journal\":{\"name\":\"Cancer immunology research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer immunology research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/2326-6066.CIR-23-0514\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer immunology research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2326-6066.CIR-23-0514","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
尽管黑色素瘤的治疗取得了最新进展,但许多患有转移性疾病的患者仍然病入膏肓。为了确定黑色素瘤免疫的肿瘤内在调节因子,我们在黑色素瘤中进行了全基因组CRISPR筛选,并确定了Setdb1以及HUSH复合体的所有成分。我们发现,Setdb1的缺失会导致免疫原性增加,并以CD8+ T细胞依赖的方式完全清除肿瘤。从机理上讲,Setdb1的缺失会导致黑色素瘤细胞中内源性逆转录病毒(ERV)的去抑制,并引发肿瘤细胞内在的I型干扰素信号、MHC-I表达的上调和CD8+ T细胞浸润的增加。重要的是,在Setdb1-/-肿瘤中观察到的自发免疫清除会在随后的其他ERV表达肿瘤系中产生保护作用,这支持了在Setdb1-/-微环境中发现的ERV特异性CD8+ T细胞的功能性抗肿瘤作用。在移植了Setdb1-/-肿瘤的小鼠体内阻断Ⅰ型干扰素受体会降低MHC-Ⅰ的表达,从而降低免疫原性,导致T细胞浸润减少和黑色素瘤生长增加,与Setdb1-wt肿瘤相当。总之,这些结果提供了关键的体内证据,证明 Setdb1 和 I 型干扰素在产生炎症肿瘤微环境和增强黑色素瘤的肿瘤细胞内在免疫原性方面起着关键作用。这项研究进一步强调,ERV 表达和 I 型干扰素表达的调节因子是增强抗癌免疫反应的潜在治疗靶点。
Setdb1-loss induces type-I interferons and immune clearance of melanoma.
Despite recent advances in the treatment of melanoma, many patients with metastatic disease still succumb to their disease. To identify tumor-intrinsic modulators of immunity to melanoma, we performed a whole-genome CRISPR screen in melanoma and identified Setdb1 as well as all components of the HUSH complex. We found that loss of Setdb1 leads to increased immunogenicity and complete tumor clearance in a CD8+ T-cell dependent manner. Mechanistically, loss of Setdb1 causes de-repression of endogenous retroviruses (ERVs) in melanoma cells and triggers tumor-cell intrinsic type-I interferon signaling, upregulation of MHC-I expression, and increased CD8+ T-cell infiltration. Importantly, spontaneous immune clearance observed in Setdb1-/- tumors results in subsequent protection from other ERV-expressing tumor lines, supporting the functional anti-tumor role of ERV-specific CD8+ T-cells found in the Setdb1-/- microenvironment. Blocking the type-I interferon receptor in mice grafted with Setdb1-/- tumors decreases immunogenicity by decreasing MHC-I expression, leading to decreased T-cell infiltration and increased melanoma growth, comparable to Setdb1wt tumors. Together, these results provide key in vivo evidence of a critical role for Setdb1 and type-I interferons in generating an inflamed tumor microenvironment, and potentiating tumor-cell intrinsic immunogenicity in melanoma. This study further emphasizes regulators of ERV expression and type-I interferon expression as potential therapeutic targets for augmenting anti-cancer immune responses.
期刊介绍:
Cancer Immunology Research publishes exceptional original articles showcasing significant breakthroughs across the spectrum of cancer immunology. From fundamental inquiries into host-tumor interactions to developmental therapeutics, early translational studies, and comprehensive analyses of late-stage clinical trials, the journal provides a comprehensive view of the discipline. In addition to original research, the journal features reviews and opinion pieces of broad significance, fostering cross-disciplinary collaboration within the cancer research community. Serving as a premier resource for immunology knowledge in cancer research, the journal drives deeper insights into the host-tumor relationship, potent cancer treatments, and enhanced clinical outcomes.
Key areas of interest include endogenous antitumor immunity, tumor-promoting inflammation, cancer antigens, vaccines, antibodies, cellular therapy, cytokines, immune regulation, immune suppression, immunomodulatory effects of cancer treatment, emerging technologies, and insightful clinical investigations with immunological implications.