六神丸可抑制 PI3K/Akt 和 TRPV1 信号,减轻大鼠骨癌疼痛。

IF 4.4 4区 医学 Q2 ONCOLOGY Cancer Biology & Therapy Pub Date : 2024-12-31 Epub Date: 2024-11-25 DOI:10.1080/15384047.2024.2432098
Hui Zhang, Jingwen Jiang, Xuewu Chen, Fengting Zhu, Fangfang Fu, Aiying Chen, Lei Fu, Dan Mao
{"title":"六神丸可抑制 PI3K/Akt 和 TRPV1 信号,减轻大鼠骨癌疼痛。","authors":"Hui Zhang, Jingwen Jiang, Xuewu Chen, Fengting Zhu, Fangfang Fu, Aiying Chen, Lei Fu, Dan Mao","doi":"10.1080/15384047.2024.2432098","DOIUrl":null,"url":null,"abstract":"<p><p>Patients with advanced-stage cancers often suffer from severe pain caused by bone metastasis and destruction, for which effective treatment options are limited. Liu-Shen-Wan (LSW) is a widely recognized herbal formula utilized for pain relief. This study aims to elucidate the effects of LSW on bone cancer pain (BCP). In this study, the pharmacology of LSW on BCP was screened by network pharmacology. A BCP model was conducted using Walker 256 cells. Paw withdrawal threshold and paw withdrawal latency were employed as measures to assess the pain threshold in rats. The pathways and cell types of LSW against BCP were explored. Next, the impact of LSW on Walker 256 cells was evaluated, and UPLC-MS was utilized to identify the active ingredients of LSW. Furthermore, the effects of the key active ingredient, Bufalin, on the BCP rats were evaluated. There were 275 shared targets between LSW and BCP, which were enriched in neural tissue ligand-receptor interaction pathway. LSW increased pain threshold and decreased inflammatory cytokines levels in BCP rats by inhibiting PI3K/Akt and transient receptor potential vanilloid 1 (TRPV1) signaling through astrocytes and microglia. LY294002 further alleviated BCP in rats, while the effects were reversed after treatment with insulin-like growth factor 1 (IGF-1). Both LSW and its active ingredient Bufalin were shown to inhibit the viability and migration of Walker 256 cells and induce apoptosis. Bufalin appears to be the key active ingredient of LSW and exerts its pain-relieving effects by suppressing PI3K/Akt and TRPV1 signaling in BCP.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2432098"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601056/pdf/","citationCount":"0","resultStr":"{\"title\":\"Liu-Shen-Wan inhibits PI3K/Akt and TRPV1 signaling alleviating bone cancer pain in rats.\",\"authors\":\"Hui Zhang, Jingwen Jiang, Xuewu Chen, Fengting Zhu, Fangfang Fu, Aiying Chen, Lei Fu, Dan Mao\",\"doi\":\"10.1080/15384047.2024.2432098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Patients with advanced-stage cancers often suffer from severe pain caused by bone metastasis and destruction, for which effective treatment options are limited. Liu-Shen-Wan (LSW) is a widely recognized herbal formula utilized for pain relief. This study aims to elucidate the effects of LSW on bone cancer pain (BCP). In this study, the pharmacology of LSW on BCP was screened by network pharmacology. A BCP model was conducted using Walker 256 cells. Paw withdrawal threshold and paw withdrawal latency were employed as measures to assess the pain threshold in rats. The pathways and cell types of LSW against BCP were explored. Next, the impact of LSW on Walker 256 cells was evaluated, and UPLC-MS was utilized to identify the active ingredients of LSW. Furthermore, the effects of the key active ingredient, Bufalin, on the BCP rats were evaluated. There were 275 shared targets between LSW and BCP, which were enriched in neural tissue ligand-receptor interaction pathway. LSW increased pain threshold and decreased inflammatory cytokines levels in BCP rats by inhibiting PI3K/Akt and transient receptor potential vanilloid 1 (TRPV1) signaling through astrocytes and microglia. LY294002 further alleviated BCP in rats, while the effects were reversed after treatment with insulin-like growth factor 1 (IGF-1). Both LSW and its active ingredient Bufalin were shown to inhibit the viability and migration of Walker 256 cells and induce apoptosis. Bufalin appears to be the key active ingredient of LSW and exerts its pain-relieving effects by suppressing PI3K/Akt and TRPV1 signaling in BCP.</p>\",\"PeriodicalId\":9536,\"journal\":{\"name\":\"Cancer Biology & Therapy\",\"volume\":\"25 1\",\"pages\":\"2432098\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601056/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Biology & Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/15384047.2024.2432098\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biology & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15384047.2024.2432098","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

晚期癌症患者通常会因骨转移和骨质破坏而感到剧烈疼痛,但有效的治疗方法却很有限。六神丸是一种广受认可的止痛中药配方。本研究旨在阐明六神丸对骨癌疼痛(BCP)的影响。本研究通过网络药理学筛选了六神丸对 BCP 的药理作用。使用 Walker 256 细胞建立了 BCP 模型。采用爪退缩阈值和爪退缩潜伏期来评估大鼠的疼痛阈值。探讨了LSW对抗BCP的途径和细胞类型。接着,评估了LSW对Walker 256细胞的影响,并利用UPLC-MS鉴定了LSW的活性成分。此外,还评估了主要活性成分 Bufalin 对 BCP 大鼠的影响。结果表明,LSW和BCP有275个共同靶点,这些靶点富含神经组织配体-受体相互作用途径。LSW通过抑制PI3K/Akt和通过星形胶质细胞和小胶质细胞的瞬态受体电位香草素1(TRPV1)信号传导,提高了BCP大鼠的痛阈值,降低了炎性细胞因子水平。LY294002 可进一步缓解大鼠的 BCP 症状,而用胰岛素样生长因子 1(IGF-1)治疗后,其效果则会逆转。研究表明,LSW 及其活性成分 Bufalin 都能抑制 Walker 256 细胞的活力和迁移,并诱导细胞凋亡。Bufalin似乎是LSW的主要活性成分,它通过抑制BCP中的PI3K/Akt和TRPV1信号传导来发挥镇痛作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Liu-Shen-Wan inhibits PI3K/Akt and TRPV1 signaling alleviating bone cancer pain in rats.

Patients with advanced-stage cancers often suffer from severe pain caused by bone metastasis and destruction, for which effective treatment options are limited. Liu-Shen-Wan (LSW) is a widely recognized herbal formula utilized for pain relief. This study aims to elucidate the effects of LSW on bone cancer pain (BCP). In this study, the pharmacology of LSW on BCP was screened by network pharmacology. A BCP model was conducted using Walker 256 cells. Paw withdrawal threshold and paw withdrawal latency were employed as measures to assess the pain threshold in rats. The pathways and cell types of LSW against BCP were explored. Next, the impact of LSW on Walker 256 cells was evaluated, and UPLC-MS was utilized to identify the active ingredients of LSW. Furthermore, the effects of the key active ingredient, Bufalin, on the BCP rats were evaluated. There were 275 shared targets between LSW and BCP, which were enriched in neural tissue ligand-receptor interaction pathway. LSW increased pain threshold and decreased inflammatory cytokines levels in BCP rats by inhibiting PI3K/Akt and transient receptor potential vanilloid 1 (TRPV1) signaling through astrocytes and microglia. LY294002 further alleviated BCP in rats, while the effects were reversed after treatment with insulin-like growth factor 1 (IGF-1). Both LSW and its active ingredient Bufalin were shown to inhibit the viability and migration of Walker 256 cells and induce apoptosis. Bufalin appears to be the key active ingredient of LSW and exerts its pain-relieving effects by suppressing PI3K/Akt and TRPV1 signaling in BCP.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer Biology & Therapy
Cancer Biology & Therapy 医学-肿瘤学
CiteScore
7.00
自引率
0.00%
发文量
60
审稿时长
2.3 months
期刊介绍: Cancer, the second leading cause of death, is a heterogenous group of over 100 diseases. Cancer is characterized by disordered and deregulated cellular and stromal proliferation accompanied by reduced cell death with the ability to survive under stresses of nutrient and growth factor deprivation, hypoxia, and loss of cell-to-cell contacts. At the molecular level, cancer is a genetic disease that develops due to the accumulation of mutations over time in somatic cells. The phenotype includes genomic instability and chromosomal aneuploidy that allows for acceleration of genetic change. Malignant transformation and tumor progression of any cell requires immortalization, loss of checkpoint control, deregulation of growth, and survival. A tremendous amount has been learned about the numerous cellular and molecular genetic changes and the host-tumor interactions that accompany tumor development and progression. It is the goal of the field of Molecular Oncology to use this knowledge to understand cancer pathogenesis and drug action, as well as to develop more effective diagnostic and therapeutic strategies for cancer. This includes preventative strategies as well as approaches to treat metastases. With the availability of the human genome sequence and genomic and proteomic approaches, a wealth of tools and resources are generating even more information. The challenge will be to make biological sense out of the information, to develop appropriate models and hypotheses and to translate information for the clinicians and the benefit of their patients. Cancer Biology & Therapy aims to publish original research on the molecular basis of cancer, including articles with translational relevance to diagnosis or therapy. We will include timely reviews covering the broad scope of the journal. The journal will also publish op-ed pieces and meeting reports of interest. The goal is to foster communication and rapid exchange of information through timely publication of important results using traditional as well as electronic formats. The journal and the outstanding Editorial Board will strive to maintain the highest standards for excellence in all activities to generate a valuable resource.
期刊最新文献
Red ginseng polysaccharide promotes ferroptosis in gastric cancer cells by inhibiting PI3K/Akt pathway through down-regulation of AQP3. Diagnostic value of 18F-PSMA-1007 PET/CT for predicting the pathological grade of prostate cancer. Correction. WYC-209 inhibited GC malignant progression by down-regulating WNT4 through RARα. Efficacy and pharmacodynamic effect of anti-CD73 and anti-PD-L1 monoclonal antibodies in combination with cytotoxic therapy: observations from mouse tumor models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1