从多尺度框架洞察驱动多形性胶质母细胞瘤生长和侵袭的代谢率变化

Meitham Amereh, Shahla Shojaei, Amir Seyfoori, Tavia Walsh, Prashant Dogra, Vittorio Cristini, Ben Nadler, Mohsen Akbari
{"title":"从多尺度框架洞察驱动多形性胶质母细胞瘤生长和侵袭的代谢率变化","authors":"Meitham Amereh, Shahla Shojaei, Amir Seyfoori, Tavia Walsh, Prashant Dogra, Vittorio Cristini, Ben Nadler, Mohsen Akbari","doi":"10.1038/s44172-024-00319-9","DOIUrl":null,"url":null,"abstract":"Non-physiological levels of oxygen and nutrients within the tumors result in heterogeneous cell populations that exhibit distinct necrotic, hypoxic, and proliferative zones. Among these zonal cellular properties, metabolic rates strongly affect the overall growth and invasion of tumors. Here, we report on a hybrid discrete-continuum (HDC) mathematical framework that uses metabolic data from a biomimetic two-dimensional (2D) in-vitro cancer model to predict three-dimensional (3D) behaviour of in-vitro human glioblastoma (hGB). The mathematical model integrates modules of continuum, discrete, and neurons. Results indicated that the HDC model is capable of quantitatively predicting growth, invasion length, and the asymmetric finger-type invasion pattern in in-vitro hGB tumors. Additionally, the model could predict the reduction in invasion length of hGB tumoroids in response to temozolomide (TMZ). This model has the potential to incorporate additional modules, including immune cells and signaling pathways governing cancer/immune cell interactions, and can be used to investigate targeted therapies. Meitham Amereh and colleagues report a hybrid discrete-continuum model to predict the cancerous growth, invasion, and treatment response of glioblastoma tumours. Their in-silico model uses metabolic data from a biomimetic two-dimensional in-vitro cancer model to predict three-dimensional behaviour of in-vitro human glioblastoma.","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":" ","pages":"1-20"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44172-024-00319-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Insights from a multiscale framework on metabolic rate variation driving glioblastoma multiforme growth and invasion\",\"authors\":\"Meitham Amereh, Shahla Shojaei, Amir Seyfoori, Tavia Walsh, Prashant Dogra, Vittorio Cristini, Ben Nadler, Mohsen Akbari\",\"doi\":\"10.1038/s44172-024-00319-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-physiological levels of oxygen and nutrients within the tumors result in heterogeneous cell populations that exhibit distinct necrotic, hypoxic, and proliferative zones. Among these zonal cellular properties, metabolic rates strongly affect the overall growth and invasion of tumors. Here, we report on a hybrid discrete-continuum (HDC) mathematical framework that uses metabolic data from a biomimetic two-dimensional (2D) in-vitro cancer model to predict three-dimensional (3D) behaviour of in-vitro human glioblastoma (hGB). The mathematical model integrates modules of continuum, discrete, and neurons. Results indicated that the HDC model is capable of quantitatively predicting growth, invasion length, and the asymmetric finger-type invasion pattern in in-vitro hGB tumors. Additionally, the model could predict the reduction in invasion length of hGB tumoroids in response to temozolomide (TMZ). This model has the potential to incorporate additional modules, including immune cells and signaling pathways governing cancer/immune cell interactions, and can be used to investigate targeted therapies. Meitham Amereh and colleagues report a hybrid discrete-continuum model to predict the cancerous growth, invasion, and treatment response of glioblastoma tumours. Their in-silico model uses metabolic data from a biomimetic two-dimensional in-vitro cancer model to predict three-dimensional behaviour of in-vitro human glioblastoma.\",\"PeriodicalId\":72644,\"journal\":{\"name\":\"Communications engineering\",\"volume\":\" \",\"pages\":\"1-20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44172-024-00319-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44172-024-00319-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44172-024-00319-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

肿瘤内非生理水平的氧气和营养物质导致细胞群的异质性,表现出明显的坏死区、缺氧区和增殖区。在这些分区细胞特性中,新陈代谢率对肿瘤的整体生长和侵袭有很大影响。在此,我们报告了一种混合离散-连续(HDC)数学框架,该框架利用生物仿真二维(2D)体外癌症模型的代谢数据来预测体外人类胶质母细胞瘤(hGB)的三维(3D)行为。该数学模型集成了连续、离散和神经元模块。结果表明,HDC 模型能够定量预测体外人胶质母细胞瘤的生长、侵袭长度和非对称手指型侵袭模式。此外,该模型还能预测对替莫唑胺(TMZ)反应的 hGB 肿瘤侵袭长度的减少。该模型有可能纳入更多模块,包括免疫细胞和支配癌症/免疫细胞相互作用的信号通路,并可用于研究靶向疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Insights from a multiscale framework on metabolic rate variation driving glioblastoma multiforme growth and invasion
Non-physiological levels of oxygen and nutrients within the tumors result in heterogeneous cell populations that exhibit distinct necrotic, hypoxic, and proliferative zones. Among these zonal cellular properties, metabolic rates strongly affect the overall growth and invasion of tumors. Here, we report on a hybrid discrete-continuum (HDC) mathematical framework that uses metabolic data from a biomimetic two-dimensional (2D) in-vitro cancer model to predict three-dimensional (3D) behaviour of in-vitro human glioblastoma (hGB). The mathematical model integrates modules of continuum, discrete, and neurons. Results indicated that the HDC model is capable of quantitatively predicting growth, invasion length, and the asymmetric finger-type invasion pattern in in-vitro hGB tumors. Additionally, the model could predict the reduction in invasion length of hGB tumoroids in response to temozolomide (TMZ). This model has the potential to incorporate additional modules, including immune cells and signaling pathways governing cancer/immune cell interactions, and can be used to investigate targeted therapies. Meitham Amereh and colleagues report a hybrid discrete-continuum model to predict the cancerous growth, invasion, and treatment response of glioblastoma tumours. Their in-silico model uses metabolic data from a biomimetic two-dimensional in-vitro cancer model to predict three-dimensional behaviour of in-vitro human glioblastoma.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bio-inspired multi-dimensional deep fusion learning for predicting dynamical aerospace propulsion systems Perspectives on innovative non-fertilizer applications of sewage sludge for mitigating environmental and health hazards Insights from a multiscale framework on metabolic rate variation driving glioblastoma multiforme growth and invasion Ultra-lightweight rechargeable battery with enhanced gravimetric energy densities >750 Wh kg−1 in lithium–sulfur pouch cell An energy-resolving photon-counting X-ray detector for computed tomography combining silicon-photomultiplier arrays and scintillation crystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1