利用双光子荧光寿命成像显微镜和机器学习分析测量癌细胞的代谢变化

Jiaxin Zhang, Horst Wallrabe, Karsten Siller, Brian Mbogo, Thomas Cassidy, Shagufta Rehman Alam, Ammasi Periasamy
{"title":"利用双光子荧光寿命成像显微镜和机器学习分析测量癌细胞的代谢变化","authors":"Jiaxin Zhang, Horst Wallrabe, Karsten Siller, Brian Mbogo, Thomas Cassidy, Shagufta Rehman Alam, Ammasi Periasamy","doi":"10.1002/jbio.202400426","DOIUrl":null,"url":null,"abstract":"<p><p>Two-photon (2P) fluorescence lifetime imaging microscopy (FLIM) was used to track cellular metabolism with drug treatment of auto-fluorescent coenzymes NAD(P)H and FAD in living cancer cells. Simultaneous excitation at 800 nm of both coenzymes was compared with traditional sequential 740/890 nm plus another alternative of 740/800 nm, before and after adding doxorubicin in an imaging time course. Changes of redox states at single cell resolution were compared by three analysis methods: our recently introduced fluorescence lifetime redox ratio (FLIRR: NAD(P)H-a<sub>2</sub>%/FAD-a<sub>1</sub>%), machine-learning (ML) algorithms using principal component (PCA) and non-linear multi-Feature autoencoder (AE) analysis. While all three led to similar biological conclusions (early drug response), the ML models provided statistically the most robust significant results. The advantage of the single 800 nm excitation of both coenzymes for metabolic imaging in above mentioned analysis is demonstrated.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202400426"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring Metabolic Changes in Cancer Cells Using Two-Photon Fluorescence Lifetime Imaging Microscopy and Machine-Learning Analysis.\",\"authors\":\"Jiaxin Zhang, Horst Wallrabe, Karsten Siller, Brian Mbogo, Thomas Cassidy, Shagufta Rehman Alam, Ammasi Periasamy\",\"doi\":\"10.1002/jbio.202400426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Two-photon (2P) fluorescence lifetime imaging microscopy (FLIM) was used to track cellular metabolism with drug treatment of auto-fluorescent coenzymes NAD(P)H and FAD in living cancer cells. Simultaneous excitation at 800 nm of both coenzymes was compared with traditional sequential 740/890 nm plus another alternative of 740/800 nm, before and after adding doxorubicin in an imaging time course. Changes of redox states at single cell resolution were compared by three analysis methods: our recently introduced fluorescence lifetime redox ratio (FLIRR: NAD(P)H-a<sub>2</sub>%/FAD-a<sub>1</sub>%), machine-learning (ML) algorithms using principal component (PCA) and non-linear multi-Feature autoencoder (AE) analysis. While all three led to similar biological conclusions (early drug response), the ML models provided statistically the most robust significant results. The advantage of the single 800 nm excitation of both coenzymes for metabolic imaging in above mentioned analysis is demonstrated.</p>\",\"PeriodicalId\":94068,\"journal\":{\"name\":\"Journal of biophotonics\",\"volume\":\" \",\"pages\":\"e202400426\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/jbio.202400426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202400426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用双光子(2P)荧光寿命成像显微镜(FLIM)跟踪活体癌细胞中自发荧光辅酶 NAD(P)H 和 FAD 在药物治疗下的细胞代谢情况。在加入多柔比星前后的成像时间过程中,将 800 纳米同时激发两种辅酶与传统的 740/890 纳米和另一种 740/800 纳米顺序激发进行了比较。通过三种分析方法比较了单细胞分辨率下氧化还原状态的变化:我们最近推出的荧光寿命氧化还原比率(FLIRR:NAD(P)H-a2%/FAD-a1%)、使用主成分(PCA)和非线性多特征自动编码器(AE)分析的机器学习(ML)算法。虽然这三种算法都得出了类似的生物学结论(早期药物反应),但从统计学角度来看,ML 模型提供了最可靠的显著结果。在上述分析中,单 800 纳米激发两种辅酶进行代谢成像的优势得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Measuring Metabolic Changes in Cancer Cells Using Two-Photon Fluorescence Lifetime Imaging Microscopy and Machine-Learning Analysis.

Two-photon (2P) fluorescence lifetime imaging microscopy (FLIM) was used to track cellular metabolism with drug treatment of auto-fluorescent coenzymes NAD(P)H and FAD in living cancer cells. Simultaneous excitation at 800 nm of both coenzymes was compared with traditional sequential 740/890 nm plus another alternative of 740/800 nm, before and after adding doxorubicin in an imaging time course. Changes of redox states at single cell resolution were compared by three analysis methods: our recently introduced fluorescence lifetime redox ratio (FLIRR: NAD(P)H-a2%/FAD-a1%), machine-learning (ML) algorithms using principal component (PCA) and non-linear multi-Feature autoencoder (AE) analysis. While all three led to similar biological conclusions (early drug response), the ML models provided statistically the most robust significant results. The advantage of the single 800 nm excitation of both coenzymes for metabolic imaging in above mentioned analysis is demonstrated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Spatial Resolution of Three-Dimensional Pulse Waves Through Advanced Photometric Stereo Techniques. Measuring Metabolic Changes in Cancer Cells Using Two-Photon Fluorescence Lifetime Imaging Microscopy and Machine-Learning Analysis. Subtype-Specific Detection in Stage Ia Breast Cancer: Integrating Raman Spectroscopy, Machine Learning, and Liquid Biopsy for Personalised Diagnostics. Urine Analysed by FTIR, Chemometrics and Machine Learning Methods in Determination Spectroscopy Marker of Prostate Cancer in Urine. A Deep Learning-Based Approach to Characterize Skull Physical Properties: A Phantom Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1