使用 ExtractEHR 自动提取和整理电子健康记录数据。

IF 3.3 Q2 ONCOLOGY JCO Clinical Cancer Informatics Pub Date : 2024-11-01 Epub Date: 2024-11-25 DOI:10.1200/CCI.24.00100
Tamara P Miller, Kelly D Getz, Edward Krause, Yun Gun Jo, Sandhya Charapala, M Monica Gramatages, Karen Rabin, Michael E Scheurer, Jennifer J Wilkes, Brian T Fisher, Richard Aplenc
{"title":"使用 ExtractEHR 自动提取和整理电子健康记录数据。","authors":"Tamara P Miller, Kelly D Getz, Edward Krause, Yun Gun Jo, Sandhya Charapala, M Monica Gramatages, Karen Rabin, Michael E Scheurer, Jennifer J Wilkes, Brian T Fisher, Richard Aplenc","doi":"10.1200/CCI.24.00100","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Although the potential transformative effect of electronic health record (EHR) data on clinical research in adult patient populations has been very extensively discussed, the effect on pediatric oncology research has been limited. Multiple factors contribute to this more limited effect, including the paucity of pediatric cancer cases in commercial EHR-derived cancer data sets and phenotypic case identification challenges in pediatric federated EHR data.</p><p><strong>Methods: </strong>The ExtractEHR software package was initially developed as a tool to improve clinical trial adverse event reporting but has expanded its use cases to include the development of multisite EHR data sets and the support of cancer cohorts. ExtractEHR enables customized, automated data extraction from the EHR that, when implemented across multiple hospitals, can create pediatric cancer EHR data sets to address a very wide range of research questions in pediatric oncology. After ExtractEHR data acquisition, EHR data can be cleaned and graded using CleanEHR and GradeEHR, companion software packages.</p><p><strong>Results: </strong>ExtractEHR has been installed at four leading pediatric institutions: Children's Healthcare of Atlanta, Children's Hospital of Philadelphia, Texas Children's Hospital, and Seattle Children's Hospital.</p><p><strong>Conclusion: </strong>ExtractEHR has supported multiple use cases, including five clinical epidemiology studies, multicenter clinical trials, and cancer cohort assembly. Work is ongoing to develop Fast Health care Interoperability Resources ExtractEHR and implement other sustainability and scalability enhancements.</p>","PeriodicalId":51626,"journal":{"name":"JCO Clinical Cancer Informatics","volume":"8 ","pages":"e2400100"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11608624/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automated Electronic Health Record Data Extraction and Curation Using ExtractEHR.\",\"authors\":\"Tamara P Miller, Kelly D Getz, Edward Krause, Yun Gun Jo, Sandhya Charapala, M Monica Gramatages, Karen Rabin, Michael E Scheurer, Jennifer J Wilkes, Brian T Fisher, Richard Aplenc\",\"doi\":\"10.1200/CCI.24.00100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Although the potential transformative effect of electronic health record (EHR) data on clinical research in adult patient populations has been very extensively discussed, the effect on pediatric oncology research has been limited. Multiple factors contribute to this more limited effect, including the paucity of pediatric cancer cases in commercial EHR-derived cancer data sets and phenotypic case identification challenges in pediatric federated EHR data.</p><p><strong>Methods: </strong>The ExtractEHR software package was initially developed as a tool to improve clinical trial adverse event reporting but has expanded its use cases to include the development of multisite EHR data sets and the support of cancer cohorts. ExtractEHR enables customized, automated data extraction from the EHR that, when implemented across multiple hospitals, can create pediatric cancer EHR data sets to address a very wide range of research questions in pediatric oncology. After ExtractEHR data acquisition, EHR data can be cleaned and graded using CleanEHR and GradeEHR, companion software packages.</p><p><strong>Results: </strong>ExtractEHR has been installed at four leading pediatric institutions: Children's Healthcare of Atlanta, Children's Hospital of Philadelphia, Texas Children's Hospital, and Seattle Children's Hospital.</p><p><strong>Conclusion: </strong>ExtractEHR has supported multiple use cases, including five clinical epidemiology studies, multicenter clinical trials, and cancer cohort assembly. Work is ongoing to develop Fast Health care Interoperability Resources ExtractEHR and implement other sustainability and scalability enhancements.</p>\",\"PeriodicalId\":51626,\"journal\":{\"name\":\"JCO Clinical Cancer Informatics\",\"volume\":\"8 \",\"pages\":\"e2400100\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11608624/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCO Clinical Cancer Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1200/CCI.24.00100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO Clinical Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/CCI.24.00100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:虽然电子健康记录(EHR)数据对成人患者群体临床研究的潜在变革性影响已被广泛讨论,但对儿科肿瘤研究的影响却很有限。造成这种有限影响的因素有多种,包括商业电子病历衍生的癌症数据集中儿科癌症病例极少,以及儿科联合电子病历数据中的表型病例识别难题:方法:ExtractEHR 软件包最初是作为改进临床试验不良事件报告的工具而开发的,但其用途已扩展到包括开发多站点 EHR 数据集和支持癌症队列。ExtractEHR 可从电子病历中自动提取定制数据,在多家医院使用后,可创建儿科癌症电子病历数据集,以解决儿科肿瘤学中的各种研究问题。ExtractEHR 数据采集完成后,可使用配套软件 CleanEHR 和 GradeEHR 对电子病历数据进行清理和分级:结果:ExtractEHR 已在四家领先的儿科机构安装:结果:亚特兰大儿童医疗保健中心、费城儿童医院、德克萨斯儿童医院和西雅图儿童医院已安装了 ExtractEHR:结论:ExtractEHR 支持多种使用案例,包括五项临床流行病学研究、多中心临床试验和癌症队列组装。目前正在开发快速医疗互操作性资源 ExtractEHR,并实施其他可持续性和可扩展性增强措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated Electronic Health Record Data Extraction and Curation Using ExtractEHR.

Purpose: Although the potential transformative effect of electronic health record (EHR) data on clinical research in adult patient populations has been very extensively discussed, the effect on pediatric oncology research has been limited. Multiple factors contribute to this more limited effect, including the paucity of pediatric cancer cases in commercial EHR-derived cancer data sets and phenotypic case identification challenges in pediatric federated EHR data.

Methods: The ExtractEHR software package was initially developed as a tool to improve clinical trial adverse event reporting but has expanded its use cases to include the development of multisite EHR data sets and the support of cancer cohorts. ExtractEHR enables customized, automated data extraction from the EHR that, when implemented across multiple hospitals, can create pediatric cancer EHR data sets to address a very wide range of research questions in pediatric oncology. After ExtractEHR data acquisition, EHR data can be cleaned and graded using CleanEHR and GradeEHR, companion software packages.

Results: ExtractEHR has been installed at four leading pediatric institutions: Children's Healthcare of Atlanta, Children's Hospital of Philadelphia, Texas Children's Hospital, and Seattle Children's Hospital.

Conclusion: ExtractEHR has supported multiple use cases, including five clinical epidemiology studies, multicenter clinical trials, and cancer cohort assembly. Work is ongoing to develop Fast Health care Interoperability Resources ExtractEHR and implement other sustainability and scalability enhancements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
4.80%
发文量
190
期刊最新文献
CFO: Calibration-Free Odds Bayesian Designs for Dose Finding in Clinical Trials. Patient-Reported Outcomes: Comparing Functional Avoidance and Standard Thoracic Radiation Therapy in Lung Cancer. Advancements in Interoperability: Achieving Anatomic Pathology Reports That Adhere to International Standards and Are Both Human-Readable and Readily Computable. Incorporating Structured and Unstructured Data Sources to Identify and Characterize Hereditary Cancer Testing Among Veterans With Metastatic Castration-Resistant Prostate Cancer. Leveraging Radiotherapy Data for Precision Oncology: Veterans Affairs Granular Radiotherapy Information Database.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1