{"title":"通过飞行时间二次离子质谱分析了解和量化 C-S-H 中硅酸盐四面体的新方法","authors":"Yue Zhou, Linglin Xu, Zheyu Zhu, Yuting Chen, Zhongping Wang, Yun Gao, Kai Wu","doi":"10.1016/j.cemconcomp.2024.105871","DOIUrl":null,"url":null,"abstract":"The performance of cementitious materials is highly determined by calcium silicate hydrate (C-S-H). In this work, time of flight secondary ion mass spectrometry (TOF-SIMS) characterized by its high resolution was proposed to quantitatively determine the silicate tetrahedron content of C-S-H in a specific micron area. A C-S-H database in which the silicate content in local hydrates is quantified by ion intensity, was established for TOF-SIMS analysis. Results indicate that 8 negative ions and 19 positive ion fragments can be detected among the decomposition of C-S-H. By selecting the characteristic ions representing different silicate structures from ion fragments, the functional relationship between the intensity of characteristic ions and the silicate contents in C-S-H can be established. The quantification equation was proposed to calculate Q<sup>n</sup> structure contents for various alite hydrates. The silicate structures with defects allocated in the control and pre-pressed sample was constructed successfully based on the TOF-SIMS quantitative results.","PeriodicalId":519419,"journal":{"name":"Cement and Concrete Composites","volume":"79 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel method to understand and quantify silicate tetrahedron in C-S-H by Time of flight secondary ion mass spectrometry analysis\",\"authors\":\"Yue Zhou, Linglin Xu, Zheyu Zhu, Yuting Chen, Zhongping Wang, Yun Gao, Kai Wu\",\"doi\":\"10.1016/j.cemconcomp.2024.105871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of cementitious materials is highly determined by calcium silicate hydrate (C-S-H). In this work, time of flight secondary ion mass spectrometry (TOF-SIMS) characterized by its high resolution was proposed to quantitatively determine the silicate tetrahedron content of C-S-H in a specific micron area. A C-S-H database in which the silicate content in local hydrates is quantified by ion intensity, was established for TOF-SIMS analysis. Results indicate that 8 negative ions and 19 positive ion fragments can be detected among the decomposition of C-S-H. By selecting the characteristic ions representing different silicate structures from ion fragments, the functional relationship between the intensity of characteristic ions and the silicate contents in C-S-H can be established. The quantification equation was proposed to calculate Q<sup>n</sup> structure contents for various alite hydrates. The silicate structures with defects allocated in the control and pre-pressed sample was constructed successfully based on the TOF-SIMS quantitative results.\",\"PeriodicalId\":519419,\"journal\":{\"name\":\"Cement and Concrete Composites\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement and Concrete Composites\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cemconcomp.2024.105871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cemconcomp.2024.105871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel method to understand and quantify silicate tetrahedron in C-S-H by Time of flight secondary ion mass spectrometry analysis
The performance of cementitious materials is highly determined by calcium silicate hydrate (C-S-H). In this work, time of flight secondary ion mass spectrometry (TOF-SIMS) characterized by its high resolution was proposed to quantitatively determine the silicate tetrahedron content of C-S-H in a specific micron area. A C-S-H database in which the silicate content in local hydrates is quantified by ion intensity, was established for TOF-SIMS analysis. Results indicate that 8 negative ions and 19 positive ion fragments can be detected among the decomposition of C-S-H. By selecting the characteristic ions representing different silicate structures from ion fragments, the functional relationship between the intensity of characteristic ions and the silicate contents in C-S-H can be established. The quantification equation was proposed to calculate Qn structure contents for various alite hydrates. The silicate structures with defects allocated in the control and pre-pressed sample was constructed successfully based on the TOF-SIMS quantitative results.