波分复用系统中基于串联结构神经网络的信道功率优化

IF 2.6 3区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Optical Fiber Technology Pub Date : 2024-11-26 DOI:10.1016/j.yofte.2024.104057
Shengnan Li, Yuchen Song, Xuhao Pang, Yao Zhang, Min Zhang, Danshi Wang
{"title":"波分复用系统中基于串联结构神经网络的信道功率优化","authors":"Shengnan Li,&nbsp;Yuchen Song,&nbsp;Xuhao Pang,&nbsp;Yao Zhang,&nbsp;Min Zhang,&nbsp;Danshi Wang","doi":"10.1016/j.yofte.2024.104057","DOIUrl":null,"url":null,"abstract":"<div><div>For C-band wavelength-division multiplexing (WDM) transmission systems, achieving balanced output channel power is a practical goal for performance maintenance, given the moderate fiber nonlinearity and sometimes outdated control and monitoring devices in these deployed systems. To accomplish this, we propose a digital twin (DT)-based tandem neural network (NN) structure for optimizing launch power profile. The proposed structure consists of two components: an optimization NN, which generates the optimized launched channel power based on a target output power profile, and a forward DT NN, pre-trained to predict output power profile after multi-span transmission. The proposed method enables fast and efficient launch power optimization on simulated links with arbitrary channel loadings and has been validated using open-source experimental data from links with heterogeneous spans and naked amplifiers. The power profile ripple can be reduced from more than 20 dB to 1.2 dB, providing an effective solution for practical C-band WDM systems.</div></div>","PeriodicalId":19663,"journal":{"name":"Optical Fiber Technology","volume":"89 ","pages":"Article 104057"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tandem structure neural network-based channel power optimization in wavelength-division multiplexing systems\",\"authors\":\"Shengnan Li,&nbsp;Yuchen Song,&nbsp;Xuhao Pang,&nbsp;Yao Zhang,&nbsp;Min Zhang,&nbsp;Danshi Wang\",\"doi\":\"10.1016/j.yofte.2024.104057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For C-band wavelength-division multiplexing (WDM) transmission systems, achieving balanced output channel power is a practical goal for performance maintenance, given the moderate fiber nonlinearity and sometimes outdated control and monitoring devices in these deployed systems. To accomplish this, we propose a digital twin (DT)-based tandem neural network (NN) structure for optimizing launch power profile. The proposed structure consists of two components: an optimization NN, which generates the optimized launched channel power based on a target output power profile, and a forward DT NN, pre-trained to predict output power profile after multi-span transmission. The proposed method enables fast and efficient launch power optimization on simulated links with arbitrary channel loadings and has been validated using open-source experimental data from links with heterogeneous spans and naked amplifiers. The power profile ripple can be reduced from more than 20 dB to 1.2 dB, providing an effective solution for practical C-band WDM systems.</div></div>\",\"PeriodicalId\":19663,\"journal\":{\"name\":\"Optical Fiber Technology\",\"volume\":\"89 \",\"pages\":\"Article 104057\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Fiber Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1068520024004024\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Fiber Technology","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1068520024004024","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

对于 C 波段波分复用(WDM)传输系统而言,由于光纤存在一定的非线性,而且这些已部署系统中的控制和监控设备有时会过时,因此实现均衡的输出信道功率是性能维护的一个实际目标。为此,我们提出了一种基于数字孪生(DT)的串联神经网络(NN)结构,用于优化发射功率曲线。建议的结构由两部分组成:一个是优化神经网络,它根据目标输出功率曲线生成优化的发射信道功率;另一个是前向 DT 神经网络,它经过预先训练,可预测多跨度传输后的输出功率曲线。所提出的方法可在具有任意信道负载的模拟链路上实现快速、高效的发射功率优化,并利用具有异构跨度和裸放大器的链路的开源实验数据进行了验证。功率曲线纹波可从 20 多 dB 降至 1.2 dB,为实际 C 波段波分复用系统提供了有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tandem structure neural network-based channel power optimization in wavelength-division multiplexing systems
For C-band wavelength-division multiplexing (WDM) transmission systems, achieving balanced output channel power is a practical goal for performance maintenance, given the moderate fiber nonlinearity and sometimes outdated control and monitoring devices in these deployed systems. To accomplish this, we propose a digital twin (DT)-based tandem neural network (NN) structure for optimizing launch power profile. The proposed structure consists of two components: an optimization NN, which generates the optimized launched channel power based on a target output power profile, and a forward DT NN, pre-trained to predict output power profile after multi-span transmission. The proposed method enables fast and efficient launch power optimization on simulated links with arbitrary channel loadings and has been validated using open-source experimental data from links with heterogeneous spans and naked amplifiers. The power profile ripple can be reduced from more than 20 dB to 1.2 dB, providing an effective solution for practical C-band WDM systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optical Fiber Technology
Optical Fiber Technology 工程技术-电信学
CiteScore
4.80
自引率
11.10%
发文量
327
审稿时长
63 days
期刊介绍: Innovations in optical fiber technology are revolutionizing world communications. Newly developed fiber amplifiers allow for direct transmission of high-speed signals over transcontinental distances without the need for electronic regeneration. Optical fibers find new applications in data processing. The impact of fiber materials, devices, and systems on communications in the coming decades will create an abundance of primary literature and the need for up-to-date reviews. Optical Fiber Technology: Materials, Devices, and Systems is a new cutting-edge journal designed to fill a need in this rapidly evolving field for speedy publication of regular length papers. Both theoretical and experimental papers on fiber materials, devices, and system performance evaluation and measurements are eligible, with emphasis on practical applications.
期刊最新文献
Editorial Board Corrigendum to “Six-dimensional geometrically shaped constellation based on regular hexahedral structure for IM/DD system” [Opt. Fiber Technol. 86 (2024) 103842] Machine learning model based on the time domain regular perturbation-based theory for performance estimation in arbitrary heterogeneous optical links Spectral peak filtering using nonlinear polarization interferometer based on polarization maintaining fiber Quick fabrication method of a thermally expanded core in polarization-maintaining fibers using CO2 laser and fiber rotation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1