Meiling Li , Mingwei Hu , Yaning Wang , Yonghui Ma , Yi Yuan , Tahashi Masahiro , Qiang Wang
{"title":"高磁场下定向凝固制备的基于 Bi2Te3 的热电特性","authors":"Meiling Li , Mingwei Hu , Yaning Wang , Yonghui Ma , Yi Yuan , Tahashi Masahiro , Qiang Wang","doi":"10.1016/j.mtla.2024.102294","DOIUrl":null,"url":null,"abstract":"<div><div>This study reports a significant enhancement of the thermoelectric properties of Bi<sub>2</sub>Te<sub>3</sub>-based materials achieved by modifying their internal microstructure via the high magnetic field-directed solidification method. The magnetic moment generated by the magnetic field leads to an optimal crystal orientation, drastically reducing the resistivity while maintaining the stability of the Seebeck coefficient. Consequently, the power factors of P-type Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> and N-type Bi<sub>2</sub>Te<sub>3</sub> samples were improved by 29.2 and 23.2 %, respectively. Furthermore, the thermoelectric magnetic force by the high magnetic field serves to refine the grain size and augment the source of phonon scatting, which effectively reduces the lattice thermal conductivity. Eventually, the <em>zT</em><sub>Max</sub> of the P-type Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> sample reaches 1.12, while that of the N-type Bi<sub>2</sub>Te<sub>3</sub> sample is 0.24, both higher than the value without the high magnetic field.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102294"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermoelectric properties of Bi2Te3-based prepared by directional solidification under a high magnetic field\",\"authors\":\"Meiling Li , Mingwei Hu , Yaning Wang , Yonghui Ma , Yi Yuan , Tahashi Masahiro , Qiang Wang\",\"doi\":\"10.1016/j.mtla.2024.102294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study reports a significant enhancement of the thermoelectric properties of Bi<sub>2</sub>Te<sub>3</sub>-based materials achieved by modifying their internal microstructure via the high magnetic field-directed solidification method. The magnetic moment generated by the magnetic field leads to an optimal crystal orientation, drastically reducing the resistivity while maintaining the stability of the Seebeck coefficient. Consequently, the power factors of P-type Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> and N-type Bi<sub>2</sub>Te<sub>3</sub> samples were improved by 29.2 and 23.2 %, respectively. Furthermore, the thermoelectric magnetic force by the high magnetic field serves to refine the grain size and augment the source of phonon scatting, which effectively reduces the lattice thermal conductivity. Eventually, the <em>zT</em><sub>Max</sub> of the P-type Bi<sub>0.5</sub>Sb<sub>1.5</sub>Te<sub>3</sub> sample reaches 1.12, while that of the N-type Bi<sub>2</sub>Te<sub>3</sub> sample is 0.24, both higher than the value without the high magnetic field.</div></div>\",\"PeriodicalId\":47623,\"journal\":{\"name\":\"Materialia\",\"volume\":\"38 \",\"pages\":\"Article 102294\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materialia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589152924002916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152924002916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Thermoelectric properties of Bi2Te3-based prepared by directional solidification under a high magnetic field
This study reports a significant enhancement of the thermoelectric properties of Bi2Te3-based materials achieved by modifying their internal microstructure via the high magnetic field-directed solidification method. The magnetic moment generated by the magnetic field leads to an optimal crystal orientation, drastically reducing the resistivity while maintaining the stability of the Seebeck coefficient. Consequently, the power factors of P-type Bi0.5Sb1.5Te3 and N-type Bi2Te3 samples were improved by 29.2 and 23.2 %, respectively. Furthermore, the thermoelectric magnetic force by the high magnetic field serves to refine the grain size and augment the source of phonon scatting, which effectively reduces the lattice thermal conductivity. Eventually, the zTMax of the P-type Bi0.5Sb1.5Te3 sample reaches 1.12, while that of the N-type Bi2Te3 sample is 0.24, both higher than the value without the high magnetic field.
期刊介绍:
Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials.
Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).