Tim Kneafsey , Pat Dobson , Doug Blankenship , Paul Schwering , Mark White , Joseph P. Morris , Lianjie Huang , Tim Johnson , Jeff Burghardt , Earl Mattson , Ghanashyam Neupane , Chris Strickland , Hunter Knox , Vince Vermuel , Jonathan Ajo-Franklin , Pengcheng Fu , William Roggenthen , Tom Doe , Martin Schoenball , Chet Hopp , Michelle Robertson
{"title":"EGS Collab 项目:1.25 千米和 1.5 千米深度结晶岩水力压裂激励的成果和经验教训","authors":"Tim Kneafsey , Pat Dobson , Doug Blankenship , Paul Schwering , Mark White , Joseph P. Morris , Lianjie Huang , Tim Johnson , Jeff Burghardt , Earl Mattson , Ghanashyam Neupane , Chris Strickland , Hunter Knox , Vince Vermuel , Jonathan Ajo-Franklin , Pengcheng Fu , William Roggenthen , Tom Doe , Martin Schoenball , Chet Hopp , Michelle Robertson","doi":"10.1016/j.geothermics.2024.103178","DOIUrl":null,"url":null,"abstract":"<div><div>With the goal of better understanding stimulation in crystalline rock for improving enhanced geothermal systems (EGS), the EGS Collab Project performed a series of stimulations and flow tests at 1.25 and 1.5 km depths. The tests were performed in two well-instrumented testbeds in the Sanford Underground Research Facility in Lead, South Dakota, United States. The testbed for Experiment 1 at 1.5 km depth contained two open wells for injection and production and six instrumented monitoring wells surrounding the targeted stimulation zone. Four multi-step stimulation tests targeting hydraulic fracturing and nearly year-long ambient temperature and chilled water flow tests were performed in Experiment 1. The testbed for Experiments 2 and 3 was at 1.25 km depth and contained five open wells in an outwardly fanning five-spot pattern and two fans of well-instrumented monitoring wells surrounding the targeted stimulation zone. Experiment 2 targeted shear stimulation, and Experiment 3 targeted low-flow, high-flow, and oscillating pressure stimulation strategies. Hydraulic fracturing was successful in Experiments 1 and 3 in generating a connected system wherein injected water could be collected. However, the resulting flow was distributed dynamically, and not entirely collected at the anticipated production well. Thermal breakthrough was not observed in the production well, but that could have been masked by the Joule-Thomson effect. Shear stimulation in Experiment 2 did not occur – despite attempting to pressurize the fractures most likely to shear – because of the inability to inject water into a mostly-healed fracture, and the low shear-to-normal stress ratio. The EGS Collab experiments are described to provide a background for lessons learned on topics including induced seismicity, the correlation between seismicity and permeability, distributed and dynamic flow systems, thermoelastic and pressure effects, shear stimulation, local geology, thermal breakthrough, monitoring stimulation, grouting boreholes, modeling, and system management.</div></div>","PeriodicalId":55095,"journal":{"name":"Geothermics","volume":"126 ","pages":"Article 103178"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The EGS Collab project: Outcomes and lessons learned from hydraulic fracture stimulations in crystalline rock at 1.25 and 1.5 km depth\",\"authors\":\"Tim Kneafsey , Pat Dobson , Doug Blankenship , Paul Schwering , Mark White , Joseph P. Morris , Lianjie Huang , Tim Johnson , Jeff Burghardt , Earl Mattson , Ghanashyam Neupane , Chris Strickland , Hunter Knox , Vince Vermuel , Jonathan Ajo-Franklin , Pengcheng Fu , William Roggenthen , Tom Doe , Martin Schoenball , Chet Hopp , Michelle Robertson\",\"doi\":\"10.1016/j.geothermics.2024.103178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the goal of better understanding stimulation in crystalline rock for improving enhanced geothermal systems (EGS), the EGS Collab Project performed a series of stimulations and flow tests at 1.25 and 1.5 km depths. The tests were performed in two well-instrumented testbeds in the Sanford Underground Research Facility in Lead, South Dakota, United States. The testbed for Experiment 1 at 1.5 km depth contained two open wells for injection and production and six instrumented monitoring wells surrounding the targeted stimulation zone. Four multi-step stimulation tests targeting hydraulic fracturing and nearly year-long ambient temperature and chilled water flow tests were performed in Experiment 1. The testbed for Experiments 2 and 3 was at 1.25 km depth and contained five open wells in an outwardly fanning five-spot pattern and two fans of well-instrumented monitoring wells surrounding the targeted stimulation zone. Experiment 2 targeted shear stimulation, and Experiment 3 targeted low-flow, high-flow, and oscillating pressure stimulation strategies. Hydraulic fracturing was successful in Experiments 1 and 3 in generating a connected system wherein injected water could be collected. However, the resulting flow was distributed dynamically, and not entirely collected at the anticipated production well. Thermal breakthrough was not observed in the production well, but that could have been masked by the Joule-Thomson effect. Shear stimulation in Experiment 2 did not occur – despite attempting to pressurize the fractures most likely to shear – because of the inability to inject water into a mostly-healed fracture, and the low shear-to-normal stress ratio. The EGS Collab experiments are described to provide a background for lessons learned on topics including induced seismicity, the correlation between seismicity and permeability, distributed and dynamic flow systems, thermoelastic and pressure effects, shear stimulation, local geology, thermal breakthrough, monitoring stimulation, grouting boreholes, modeling, and system management.</div></div>\",\"PeriodicalId\":55095,\"journal\":{\"name\":\"Geothermics\",\"volume\":\"126 \",\"pages\":\"Article 103178\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geothermics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375650524002645\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375650524002645","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
The EGS Collab project: Outcomes and lessons learned from hydraulic fracture stimulations in crystalline rock at 1.25 and 1.5 km depth
With the goal of better understanding stimulation in crystalline rock for improving enhanced geothermal systems (EGS), the EGS Collab Project performed a series of stimulations and flow tests at 1.25 and 1.5 km depths. The tests were performed in two well-instrumented testbeds in the Sanford Underground Research Facility in Lead, South Dakota, United States. The testbed for Experiment 1 at 1.5 km depth contained two open wells for injection and production and six instrumented monitoring wells surrounding the targeted stimulation zone. Four multi-step stimulation tests targeting hydraulic fracturing and nearly year-long ambient temperature and chilled water flow tests were performed in Experiment 1. The testbed for Experiments 2 and 3 was at 1.25 km depth and contained five open wells in an outwardly fanning five-spot pattern and two fans of well-instrumented monitoring wells surrounding the targeted stimulation zone. Experiment 2 targeted shear stimulation, and Experiment 3 targeted low-flow, high-flow, and oscillating pressure stimulation strategies. Hydraulic fracturing was successful in Experiments 1 and 3 in generating a connected system wherein injected water could be collected. However, the resulting flow was distributed dynamically, and not entirely collected at the anticipated production well. Thermal breakthrough was not observed in the production well, but that could have been masked by the Joule-Thomson effect. Shear stimulation in Experiment 2 did not occur – despite attempting to pressurize the fractures most likely to shear – because of the inability to inject water into a mostly-healed fracture, and the low shear-to-normal stress ratio. The EGS Collab experiments are described to provide a background for lessons learned on topics including induced seismicity, the correlation between seismicity and permeability, distributed and dynamic flow systems, thermoelastic and pressure effects, shear stimulation, local geology, thermal breakthrough, monitoring stimulation, grouting boreholes, modeling, and system management.
期刊介绍:
Geothermics is an international journal devoted to the research and development of geothermal energy. The International Board of Editors of Geothermics, which comprises specialists in the various aspects of geothermal resources, exploration and development, guarantees the balanced, comprehensive view of scientific and technological developments in this promising energy field.
It promulgates the state of the art and science of geothermal energy, its exploration and exploitation through a regular exchange of information from all parts of the world. The journal publishes articles dealing with the theory, exploration techniques and all aspects of the utilization of geothermal resources. Geothermics serves as the scientific house, or exchange medium, through which the growing community of geothermal specialists can provide and receive information.