掺杂铕的 ZnSnO3 纳米粒子的氧进化动力学、超级电容器和显示应用

IF 4 2区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Molecular Structure Pub Date : 2024-11-26 DOI:10.1016/j.molstruc.2024.140801
Vishwalinga Prasad.B , Ningappa. C , H.C. Manjunatha , Y.S. Vidya , S. Manjunatha , R. Munirathnam , M. Shivanna , Sahana R , K.N. Sridhar , K. Manjunatha , Sheng Yun Wu
{"title":"掺杂铕的 ZnSnO3 纳米粒子的氧进化动力学、超级电容器和显示应用","authors":"Vishwalinga Prasad.B ,&nbsp;Ningappa. C ,&nbsp;H.C. Manjunatha ,&nbsp;Y.S. Vidya ,&nbsp;S. Manjunatha ,&nbsp;R. Munirathnam ,&nbsp;M. Shivanna ,&nbsp;Sahana R ,&nbsp;K.N. Sridhar ,&nbsp;K. Manjunatha ,&nbsp;Sheng Yun Wu","doi":"10.1016/j.molstruc.2024.140801","DOIUrl":null,"url":null,"abstract":"<div><div>ZnSnO<sub>3</sub> doped with Eu<sup>2+</sup> and Eu<sup>3+</sup> is among the few host materials capable of accommodating both Eu<sup>3+</sup> and Eu<sup>2+</sup> ions, making it a promising candidate for white light-emitting diodes (WLEDs). In this communication, spinel cubic ZnSnO<sub>3</sub>: Eu<sup>3+</sup> (1-9 mol%) NPs are synthesized by Aloe vera mediated solution combustion method followed by calcination at 600<sup><em>o</em></sup>C for 3hrs. The crystallite size decreases from 14.09 to 7.66 nm with an increase in dopant concentration. The surface morphology examined from field emission scanning electron microscope consists of bigger and smaller irregular-sized and shaped NPs with agglomeration. The optical energy band gap determined from Tauc's plot was found to be increased from 3.078 to 3.083 eV with an increase in dopant concentration. The photoluminescence (PL) emission excited under 311 nm consists peaks at 415 and 493 nm which can be attributed to 4f<sub>6</sub>5d<sub>1</sub>(T<span><math><msub><mrow></mrow><mrow><mn>2</mn><mi>g</mi></mrow></msub></math></span>) → 4f<sup>7</sup><sup>8</sup>S<sub>7/2</sub> transition of Eu<sup>2+</sup>. The another emission peak appeared at 628 nm corresponds to <sup>5</sup>D<sub>0</sub> → <sup>7</sup>F<sub>2</sub> transition of Eu<sup>3+</sup> ion. The existence of Eu<sup>2+</sup> and Eu<sup>3+</sup> is further confirmed through the X-ray photon spectroscopy measurements. The CIE coordinates lie well within the white region. The average CCT value is 7114 K showing a cooler appearance. Thus the synthesized sample might be a promising candidate in display as well as in white light-emitting diodes. Oxygen evolution reaction (OER) investigations confirm the exceptional performance of ZnSnO<sub>3</sub>:Eu (1-9 mol%) nanoparticles, showcasing impressively low overpotentials (318-333 mV) and minimal Tafel slopes (56-63 mV/dec). Chronoamperometry analysis demonstrates remarkable electrochemical stability over 20 hours with a consistent current density of 24.05-16.80 mA/cm<sup>−2</sup>. Cyclic voltammetry analysis reveals insights into redox reactions, electrode kinetics, and overall electrochemical behavior. Improved ionic transport and supercapacitance performance (47.1 -101.3 F/g) at lower scan rates indicate potential applications in energy storage and display technology.</div></div>","PeriodicalId":16414,"journal":{"name":"Journal of Molecular Structure","volume":"1324 ","pages":"Article 140801"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxygen evolution kinetics, supercapacitor and display applications of Europium doped ZnSnO3 nanoparticles\",\"authors\":\"Vishwalinga Prasad.B ,&nbsp;Ningappa. C ,&nbsp;H.C. Manjunatha ,&nbsp;Y.S. Vidya ,&nbsp;S. Manjunatha ,&nbsp;R. Munirathnam ,&nbsp;M. Shivanna ,&nbsp;Sahana R ,&nbsp;K.N. Sridhar ,&nbsp;K. Manjunatha ,&nbsp;Sheng Yun Wu\",\"doi\":\"10.1016/j.molstruc.2024.140801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>ZnSnO<sub>3</sub> doped with Eu<sup>2+</sup> and Eu<sup>3+</sup> is among the few host materials capable of accommodating both Eu<sup>3+</sup> and Eu<sup>2+</sup> ions, making it a promising candidate for white light-emitting diodes (WLEDs). In this communication, spinel cubic ZnSnO<sub>3</sub>: Eu<sup>3+</sup> (1-9 mol%) NPs are synthesized by Aloe vera mediated solution combustion method followed by calcination at 600<sup><em>o</em></sup>C for 3hrs. The crystallite size decreases from 14.09 to 7.66 nm with an increase in dopant concentration. The surface morphology examined from field emission scanning electron microscope consists of bigger and smaller irregular-sized and shaped NPs with agglomeration. The optical energy band gap determined from Tauc's plot was found to be increased from 3.078 to 3.083 eV with an increase in dopant concentration. The photoluminescence (PL) emission excited under 311 nm consists peaks at 415 and 493 nm which can be attributed to 4f<sub>6</sub>5d<sub>1</sub>(T<span><math><msub><mrow></mrow><mrow><mn>2</mn><mi>g</mi></mrow></msub></math></span>) → 4f<sup>7</sup><sup>8</sup>S<sub>7/2</sub> transition of Eu<sup>2+</sup>. The another emission peak appeared at 628 nm corresponds to <sup>5</sup>D<sub>0</sub> → <sup>7</sup>F<sub>2</sub> transition of Eu<sup>3+</sup> ion. The existence of Eu<sup>2+</sup> and Eu<sup>3+</sup> is further confirmed through the X-ray photon spectroscopy measurements. The CIE coordinates lie well within the white region. The average CCT value is 7114 K showing a cooler appearance. Thus the synthesized sample might be a promising candidate in display as well as in white light-emitting diodes. Oxygen evolution reaction (OER) investigations confirm the exceptional performance of ZnSnO<sub>3</sub>:Eu (1-9 mol%) nanoparticles, showcasing impressively low overpotentials (318-333 mV) and minimal Tafel slopes (56-63 mV/dec). Chronoamperometry analysis demonstrates remarkable electrochemical stability over 20 hours with a consistent current density of 24.05-16.80 mA/cm<sup>−2</sup>. Cyclic voltammetry analysis reveals insights into redox reactions, electrode kinetics, and overall electrochemical behavior. Improved ionic transport and supercapacitance performance (47.1 -101.3 F/g) at lower scan rates indicate potential applications in energy storage and display technology.</div></div>\",\"PeriodicalId\":16414,\"journal\":{\"name\":\"Journal of Molecular Structure\",\"volume\":\"1324 \",\"pages\":\"Article 140801\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Structure\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002228602403309X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Structure","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002228602403309X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

掺杂了 Eu2+ 和 Eu3+ 的 ZnSnO3 是少数几种能够同时容纳 Eu3+ 和 Eu2+ 离子的宿主材料之一,因此很有希望成为白光发光二极管 (WLED) 的候选材料。在这篇通讯中,尖晶立方 ZnSnO3:Eu3+ (1-9 mol%) NPs,然后在 600oC 煅烧 3 小时。随着掺杂剂浓度的增加,晶体尺寸从 14.09 纳米减小到 7.66 纳米。从场发射扫描电子显微镜观察到的表面形貌包括较大和较小的不规则尺寸和形状的 NPs,并有团聚现象。根据陶氏图谱测定的光能带隙发现,随着掺杂剂浓度的增加,能带隙从 3.078 eV 增加到 3.083 eV。在 311 纳米波长下激发的光致发光(PL)在 415 和 493 纳米波长处出现峰值,这可归因于 Eu2+ 的 4f65d1(T2g) → 4f78S7/2 转变。另一个发射峰出现在 628 nm 处,对应于 Eu3+ 离子的 5D0 → 7F2 转变。X 射线光子光谱测量进一步证实了 Eu2+ 和 Eu3+ 的存在。CIE 坐标位于白色区域内。平均 CCT 值为 7114 K,显示出较冷的外观。因此,合成的样品有可能成为显示器和白光发光二极管的理想候选材料。氧进化反应(OER)研究证实,ZnSnO3:Eu(1-9 摩尔%)纳米粒子性能卓越,具有令人印象深刻的低过电位(318-333 mV)和最小塔菲尔斜率(56-63 mV/dec)。计时器分析表明,20 小时内电化学稳定性极佳,电流密度始终保持在 24.05-16.80 mA/cm-2。循环伏安分析揭示了氧化还原反应、电极动力学和整体电化学行为。在较低的扫描速率下,离子传输和超级电容性能(47.1 -101.3 F/g)得到了改善,这表明它在能量存储和显示技术方面具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Oxygen evolution kinetics, supercapacitor and display applications of Europium doped ZnSnO3 nanoparticles
ZnSnO3 doped with Eu2+ and Eu3+ is among the few host materials capable of accommodating both Eu3+ and Eu2+ ions, making it a promising candidate for white light-emitting diodes (WLEDs). In this communication, spinel cubic ZnSnO3: Eu3+ (1-9 mol%) NPs are synthesized by Aloe vera mediated solution combustion method followed by calcination at 600oC for 3hrs. The crystallite size decreases from 14.09 to 7.66 nm with an increase in dopant concentration. The surface morphology examined from field emission scanning electron microscope consists of bigger and smaller irregular-sized and shaped NPs with agglomeration. The optical energy band gap determined from Tauc's plot was found to be increased from 3.078 to 3.083 eV with an increase in dopant concentration. The photoluminescence (PL) emission excited under 311 nm consists peaks at 415 and 493 nm which can be attributed to 4f65d1(T2g) → 4f78S7/2 transition of Eu2+. The another emission peak appeared at 628 nm corresponds to 5D07F2 transition of Eu3+ ion. The existence of Eu2+ and Eu3+ is further confirmed through the X-ray photon spectroscopy measurements. The CIE coordinates lie well within the white region. The average CCT value is 7114 K showing a cooler appearance. Thus the synthesized sample might be a promising candidate in display as well as in white light-emitting diodes. Oxygen evolution reaction (OER) investigations confirm the exceptional performance of ZnSnO3:Eu (1-9 mol%) nanoparticles, showcasing impressively low overpotentials (318-333 mV) and minimal Tafel slopes (56-63 mV/dec). Chronoamperometry analysis demonstrates remarkable electrochemical stability over 20 hours with a consistent current density of 24.05-16.80 mA/cm−2. Cyclic voltammetry analysis reveals insights into redox reactions, electrode kinetics, and overall electrochemical behavior. Improved ionic transport and supercapacitance performance (47.1 -101.3 F/g) at lower scan rates indicate potential applications in energy storage and display technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Structure
Journal of Molecular Structure 化学-物理化学
CiteScore
7.10
自引率
15.80%
发文量
2384
审稿时长
45 days
期刊介绍: The Journal of Molecular Structure is dedicated to the publication of full-length articles and review papers, providing important new structural information on all types of chemical species including: • Stable and unstable molecules in all types of environments (vapour, molecular beam, liquid, solution, liquid crystal, solid state, matrix-isolated, surface-absorbed etc.) • Chemical intermediates • Molecules in excited states • Biological molecules • Polymers. The methods used may include any combination of spectroscopic and non-spectroscopic techniques, for example: • Infrared spectroscopy (mid, far, near) • Raman spectroscopy and non-linear Raman methods (CARS, etc.) • Electronic absorption spectroscopy • Optical rotatory dispersion and circular dichroism • Fluorescence and phosphorescence techniques • Electron spectroscopies (PES, XPS), EXAFS, etc. • Microwave spectroscopy • Electron diffraction • NMR and ESR spectroscopies • Mössbauer spectroscopy • X-ray crystallography • Charge Density Analyses • Computational Studies (supplementing experimental methods) We encourage publications combining theoretical and experimental approaches. The structural insights gained by the studies should be correlated with the properties, activity and/ or reactivity of the molecule under investigation and the relevance of this molecule and its implications should be discussed.
期刊最新文献
Editorial Board A theoretical comprehension of photophysical processes in Cu2+ sensing by 1,7-di(2-pyridyl)bispyrazolo[3,4-b:4′,3′-e]pyridines Solution and solid-state structures of dibenzylamino calix[4]arene with complexed solvent molecules Editorial Board Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1