{"title":"具有纳米级非晶/非晶界面的铜钽纳米柱中与层厚度相关的强化和应变分散机制","authors":"Jiejie Li , Lehui Dai , Jianjun Li","doi":"10.1016/j.matchemphys.2024.130197","DOIUrl":null,"url":null,"abstract":"<div><div>Introducing amorphous/amorphous interfaces in metallic glasses offers an effective strategy to address the strength-plasticity trade-off by suppressing the strain localization. Elucidating the underlying size-dependent deformation mechanisms is crucial for designing strong and ductile amorphous nanolayered materials. Herein, molecular dynamics simulations are conducted to investigate the deformation behaviors of Cu<sub>70</sub>Ta<sub>30</sub>/Cu<sub>30</sub>Ta<sub>70</sub> amorphous/amorphous nanopillars (AANPs) under compression, focusing on the intrinsic size effect of amorphous layer thickness. The results indicate a critical layer thickness of approximately 6.7 nm, below which an inverse Hall-Petch relation occurs. This transition is attributed to a shift in dominant deformation mode from the necking and localized deformation to the relatively homogeneous deformation as the layer thicknesses decreases. These A/A interfaces could be considered as a third medium phase in nanolaminates, especially when the thickness is very low, down to only a few of nm. The mechanical properties and deformation behavior of transitional interface phase lie between those of soft and hard phases, balancing heterogeneous deformation between hard and soft layers and resulting in homogeneous flow deformation of specimen with thinner amorphous layer. These findings provide insight for designing ductile amorphous materials through architecting nanoscale amorphous/amorphous interfaces.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"331 ","pages":"Article 130197"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Layer thickness dependent strengthening and strain delocalization mechanism in CuTa nanopillars with nanoscale amorphous/amorphous interfaces\",\"authors\":\"Jiejie Li , Lehui Dai , Jianjun Li\",\"doi\":\"10.1016/j.matchemphys.2024.130197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Introducing amorphous/amorphous interfaces in metallic glasses offers an effective strategy to address the strength-plasticity trade-off by suppressing the strain localization. Elucidating the underlying size-dependent deformation mechanisms is crucial for designing strong and ductile amorphous nanolayered materials. Herein, molecular dynamics simulations are conducted to investigate the deformation behaviors of Cu<sub>70</sub>Ta<sub>30</sub>/Cu<sub>30</sub>Ta<sub>70</sub> amorphous/amorphous nanopillars (AANPs) under compression, focusing on the intrinsic size effect of amorphous layer thickness. The results indicate a critical layer thickness of approximately 6.7 nm, below which an inverse Hall-Petch relation occurs. This transition is attributed to a shift in dominant deformation mode from the necking and localized deformation to the relatively homogeneous deformation as the layer thicknesses decreases. These A/A interfaces could be considered as a third medium phase in nanolaminates, especially when the thickness is very low, down to only a few of nm. The mechanical properties and deformation behavior of transitional interface phase lie between those of soft and hard phases, balancing heterogeneous deformation between hard and soft layers and resulting in homogeneous flow deformation of specimen with thinner amorphous layer. These findings provide insight for designing ductile amorphous materials through architecting nanoscale amorphous/amorphous interfaces.</div></div>\",\"PeriodicalId\":18227,\"journal\":{\"name\":\"Materials Chemistry and Physics\",\"volume\":\"331 \",\"pages\":\"Article 130197\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry and Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0254058424013257\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058424013257","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Layer thickness dependent strengthening and strain delocalization mechanism in CuTa nanopillars with nanoscale amorphous/amorphous interfaces
Introducing amorphous/amorphous interfaces in metallic glasses offers an effective strategy to address the strength-plasticity trade-off by suppressing the strain localization. Elucidating the underlying size-dependent deformation mechanisms is crucial for designing strong and ductile amorphous nanolayered materials. Herein, molecular dynamics simulations are conducted to investigate the deformation behaviors of Cu70Ta30/Cu30Ta70 amorphous/amorphous nanopillars (AANPs) under compression, focusing on the intrinsic size effect of amorphous layer thickness. The results indicate a critical layer thickness of approximately 6.7 nm, below which an inverse Hall-Petch relation occurs. This transition is attributed to a shift in dominant deformation mode from the necking and localized deformation to the relatively homogeneous deformation as the layer thicknesses decreases. These A/A interfaces could be considered as a third medium phase in nanolaminates, especially when the thickness is very low, down to only a few of nm. The mechanical properties and deformation behavior of transitional interface phase lie between those of soft and hard phases, balancing heterogeneous deformation between hard and soft layers and resulting in homogeneous flow deformation of specimen with thinner amorphous layer. These findings provide insight for designing ductile amorphous materials through architecting nanoscale amorphous/amorphous interfaces.
期刊介绍:
Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.