{"title":"通过阳极电极腐蚀与强电解质在陶氏曲线夹层电极上产生的法拉第和非法拉第损耗","authors":"Jia-Chun Lim , Subash C.B. Gopinath , Hemavathi Krishnan , Sing-Mei Tan","doi":"10.1016/j.matchemphys.2024.130193","DOIUrl":null,"url":null,"abstract":"<div><div>By integrating conventional parallel electrodes with two semi-circular curves, a new tautochrone curve interdigitated electrodes (TCIDE) biosensor was fabricated to be compatible for Faradaic and non-Faradaic measurements. Scanning electron microscopy affirmed the immaculate fabrication, as multiple scans showed that both the width and gap of electrodes were 50.0 μm, with a maximum percentage error of ∼8.0 %. A maximum current of 29.54 μA was generated with a strong electrolyte (pH 2), signifying the weak adaptability of the device to a highly acidic medium. The stability of the biosensor was further evaluated by prolonging the exposure duration to different pH levels for 5 min. Substantial increases in current were recorded under extreme pH environments (pH 2, 3, and 12) over the duration at 2.0 V, while others maintained excellent stability. A high-power microscope revealed that the anodic aluminium transducers experienced surface corrosion, elucidating the unusual current fluctuations. The mechanisms of anodic corrosion caused by the strong electrolytes were additionally proposed and discussed. As validated by electrochemical impedance spectroscopy, this study provides valuable insights into the declined biosensing performances of corroded anodes.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"331 ","pages":"Article 130193"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Faradaic and non-faradaic depletions by anodic electrode corrosion with strong electrolytes on tautochrone curve interdigitated electrodes\",\"authors\":\"Jia-Chun Lim , Subash C.B. Gopinath , Hemavathi Krishnan , Sing-Mei Tan\",\"doi\":\"10.1016/j.matchemphys.2024.130193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>By integrating conventional parallel electrodes with two semi-circular curves, a new tautochrone curve interdigitated electrodes (TCIDE) biosensor was fabricated to be compatible for Faradaic and non-Faradaic measurements. Scanning electron microscopy affirmed the immaculate fabrication, as multiple scans showed that both the width and gap of electrodes were 50.0 μm, with a maximum percentage error of ∼8.0 %. A maximum current of 29.54 μA was generated with a strong electrolyte (pH 2), signifying the weak adaptability of the device to a highly acidic medium. The stability of the biosensor was further evaluated by prolonging the exposure duration to different pH levels for 5 min. Substantial increases in current were recorded under extreme pH environments (pH 2, 3, and 12) over the duration at 2.0 V, while others maintained excellent stability. A high-power microscope revealed that the anodic aluminium transducers experienced surface corrosion, elucidating the unusual current fluctuations. The mechanisms of anodic corrosion caused by the strong electrolytes were additionally proposed and discussed. As validated by electrochemical impedance spectroscopy, this study provides valuable insights into the declined biosensing performances of corroded anodes.</div></div>\",\"PeriodicalId\":18227,\"journal\":{\"name\":\"Materials Chemistry and Physics\",\"volume\":\"331 \",\"pages\":\"Article 130193\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry and Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S025405842401321X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S025405842401321X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Faradaic and non-faradaic depletions by anodic electrode corrosion with strong electrolytes on tautochrone curve interdigitated electrodes
By integrating conventional parallel electrodes with two semi-circular curves, a new tautochrone curve interdigitated electrodes (TCIDE) biosensor was fabricated to be compatible for Faradaic and non-Faradaic measurements. Scanning electron microscopy affirmed the immaculate fabrication, as multiple scans showed that both the width and gap of electrodes were 50.0 μm, with a maximum percentage error of ∼8.0 %. A maximum current of 29.54 μA was generated with a strong electrolyte (pH 2), signifying the weak adaptability of the device to a highly acidic medium. The stability of the biosensor was further evaluated by prolonging the exposure duration to different pH levels for 5 min. Substantial increases in current were recorded under extreme pH environments (pH 2, 3, and 12) over the duration at 2.0 V, while others maintained excellent stability. A high-power microscope revealed that the anodic aluminium transducers experienced surface corrosion, elucidating the unusual current fluctuations. The mechanisms of anodic corrosion caused by the strong electrolytes were additionally proposed and discussed. As validated by electrochemical impedance spectroscopy, this study provides valuable insights into the declined biosensing performances of corroded anodes.
期刊介绍:
Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.