用于增强甲醛气体传感的等元素氧化锡/二氧化锡异质结复合材料

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Chemistry and Physics Pub Date : 2024-11-21 DOI:10.1016/j.matchemphys.2024.130167
Shaofeng Zong , Cong Qin , Hari Bala , Yan Zhang , Yan Wang , Jianliang Cao
{"title":"用于增强甲醛气体传感的等元素氧化锡/二氧化锡异质结复合材料","authors":"Shaofeng Zong ,&nbsp;Cong Qin ,&nbsp;Hari Bala ,&nbsp;Yan Zhang ,&nbsp;Yan Wang ,&nbsp;Jianliang Cao","doi":"10.1016/j.matchemphys.2024.130167","DOIUrl":null,"url":null,"abstract":"<div><div>Heterojunction composite structures engineered with homo-metallic elements are an effective strategy for boosting gas sensing capabilities due to their ability to effectively reduce the contact barrier for charge transfer. In this study, iso-elemental SnO/SnO<sub>2</sub> micro-rod composites were fabricated through hydrothermal synthesis followed by calcination. The gas sensing performance revealed that SnO/SnO<sub>2</sub> microstructure when calcined at 400 °C (referred to as M1-400), displays remarkable long-term stability, with a response value of 21.05 and the quickest recovery time of 38 s–100 ppm of formaldehyde (HCHO) at 320 °C, outperforming other sensors. Further investigation indicates that the enhanced sensitivity of M1-400 can be attributed to the p-n heterojunction of SnO–SnO<sub>2</sub> facilitating electron transport, and its increased adsorption affinity for HCHO due to higher vacuum and oxygen content. This synthesis strategy for SnO/SnO<sub>2</sub> suggests that this material is promising for HCHO gas sensing applications and could offer a potentially straightforward method for preparing one-dimensional metal oxides.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"330 ","pages":"Article 130167"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iso-elemental SnO/SnO2 heterojunction composites for enhanced formaldehyde gas sensing\",\"authors\":\"Shaofeng Zong ,&nbsp;Cong Qin ,&nbsp;Hari Bala ,&nbsp;Yan Zhang ,&nbsp;Yan Wang ,&nbsp;Jianliang Cao\",\"doi\":\"10.1016/j.matchemphys.2024.130167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Heterojunction composite structures engineered with homo-metallic elements are an effective strategy for boosting gas sensing capabilities due to their ability to effectively reduce the contact barrier for charge transfer. In this study, iso-elemental SnO/SnO<sub>2</sub> micro-rod composites were fabricated through hydrothermal synthesis followed by calcination. The gas sensing performance revealed that SnO/SnO<sub>2</sub> microstructure when calcined at 400 °C (referred to as M1-400), displays remarkable long-term stability, with a response value of 21.05 and the quickest recovery time of 38 s–100 ppm of formaldehyde (HCHO) at 320 °C, outperforming other sensors. Further investigation indicates that the enhanced sensitivity of M1-400 can be attributed to the p-n heterojunction of SnO–SnO<sub>2</sub> facilitating electron transport, and its increased adsorption affinity for HCHO due to higher vacuum and oxygen content. This synthesis strategy for SnO/SnO<sub>2</sub> suggests that this material is promising for HCHO gas sensing applications and could offer a potentially straightforward method for preparing one-dimensional metal oxides.</div></div>\",\"PeriodicalId\":18227,\"journal\":{\"name\":\"Materials Chemistry and Physics\",\"volume\":\"330 \",\"pages\":\"Article 130167\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry and Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0254058424012951\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058424012951","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

使用同金属元素设计的异质结复合结构能够有效降低电荷转移的接触障碍,因此是提高气体传感能力的有效策略。在这项研究中,通过水热合成和煅烧,制备出了等元素 SnO/SnO2 微棒复合材料。气体传感性能表明,SnO/SnO2 微结构在 400 °C 煅烧时(称为 M1-400)显示出显著的长期稳定性,其响应值为 21.05,在 320 °C 下甲醛(HCHO)的最快恢复时间为 38 s-100 ppm,优于其他传感器。进一步的研究表明,M1-400 灵敏度的提高可归因于 SnO-SnO2 的 p-n 异质结促进了电子传输,以及较高的真空度和氧气含量提高了其对 HCHO 的吸附亲和力。SnO/SnO2 的这一合成策略表明,这种材料在 HCHO 气体传感应用中大有可为,并为制备一维金属氧化物提供了一种潜在的直接方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Iso-elemental SnO/SnO2 heterojunction composites for enhanced formaldehyde gas sensing
Heterojunction composite structures engineered with homo-metallic elements are an effective strategy for boosting gas sensing capabilities due to their ability to effectively reduce the contact barrier for charge transfer. In this study, iso-elemental SnO/SnO2 micro-rod composites were fabricated through hydrothermal synthesis followed by calcination. The gas sensing performance revealed that SnO/SnO2 microstructure when calcined at 400 °C (referred to as M1-400), displays remarkable long-term stability, with a response value of 21.05 and the quickest recovery time of 38 s–100 ppm of formaldehyde (HCHO) at 320 °C, outperforming other sensors. Further investigation indicates that the enhanced sensitivity of M1-400 can be attributed to the p-n heterojunction of SnO–SnO2 facilitating electron transport, and its increased adsorption affinity for HCHO due to higher vacuum and oxygen content. This synthesis strategy for SnO/SnO2 suggests that this material is promising for HCHO gas sensing applications and could offer a potentially straightforward method for preparing one-dimensional metal oxides.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
期刊最新文献
Colloidal lithography: Synthesis and characterization of SiO2 and TiO2 micro-bowel arrays Effect of V2O5 coatings on NMC 111 battery cathode materials in aqueous process Reduced graphene oxide – CeO2 nanocomposites for photocatalytic dye degradation Structural modification of MgO/Au thin films by aluminum Co-doping and related studies on secondary electron emission Relationship between the shear modulus and volume relaxation in high-entropy metallic glasses: Experiment and physical origin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1