{"title":"未拉链多壁碳纳米管增强聚酰胺-6 复合材料的粘弹性和热性能","authors":"Sangita Tripathy , Gaurav Singh Chauhan , Jeevan Jyoti , Sushant Sharma , Sanjay R. Dhakate , Bhanu Pratap Singh","doi":"10.1016/j.diamond.2024.111766","DOIUrl":null,"url":null,"abstract":"<div><div>The excellent reinforcing capability of carbon nanofillers along with increasing demand for advanced polymer composites in automobiles, aircraft, and defense sectors motivate the research community to explore detailed mechanical, thermal, and electrical properties of carbon-based polymer nanocomposites for various applications. In this work, 0.1 to 7 parts per hundred ratios (phr) of multiwalled carbon nanotubes (MWCNTs) and unzipped MWCNTs (referred to as graphene oxide nanoribbons (GONRs)) were individually reinforced into polyamide-6 (PA6) matrix by twin-screw extrusion and standard sized specimens were prepared by the injection molding process. The interaction among PA6 and nanofillers were analyzed using Raman and FTIR spectroscopy. The oscillatory rheometry measurement at 0.1 rad/s angular frequency showed a 110.7 % rise in storage modulus and a 12.6 % rise in loss modulus for 0.1 phr GONRs reinforcements. Both the values raised by 100 % and 12.5 %, respectively for similar amounts of MWCNTs reinforcements. The thermo-gravimetric analysis (TGA) indicated the optimum thermal stability at 1 phr of GONRs content compared to the increasing stability with increasing MWCNTs content within PA6. The differential scanning calorimetry (DSC) curves indicated the optimum reinforcing capacity of GONRs at 0.5–3 phr reinforcements, as compared to those increasing for increasing MWCNTs content. An optimum reinforcing capacity at lower amounts of GONRs as compared to MWCNTs was confirmed from shifting trends of intensity peaks in Raman and FTIR spectra curves of the composites. It was attributed to high surface area and functional groups along the edges of GONRs. Altogether, the GONRs/PA6 composites possess excellent potential for applications in automotive and aerospace components, ballistics equipments, electronics, biomedicals, sensors, etc., requiring high mechanical and thermal stability.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"151 ","pages":"Article 111766"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Viscoelastic and thermal properties of unzipped multiwalled carbon nanotubes reinforced polyamide-6 composites\",\"authors\":\"Sangita Tripathy , Gaurav Singh Chauhan , Jeevan Jyoti , Sushant Sharma , Sanjay R. Dhakate , Bhanu Pratap Singh\",\"doi\":\"10.1016/j.diamond.2024.111766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The excellent reinforcing capability of carbon nanofillers along with increasing demand for advanced polymer composites in automobiles, aircraft, and defense sectors motivate the research community to explore detailed mechanical, thermal, and electrical properties of carbon-based polymer nanocomposites for various applications. In this work, 0.1 to 7 parts per hundred ratios (phr) of multiwalled carbon nanotubes (MWCNTs) and unzipped MWCNTs (referred to as graphene oxide nanoribbons (GONRs)) were individually reinforced into polyamide-6 (PA6) matrix by twin-screw extrusion and standard sized specimens were prepared by the injection molding process. The interaction among PA6 and nanofillers were analyzed using Raman and FTIR spectroscopy. The oscillatory rheometry measurement at 0.1 rad/s angular frequency showed a 110.7 % rise in storage modulus and a 12.6 % rise in loss modulus for 0.1 phr GONRs reinforcements. Both the values raised by 100 % and 12.5 %, respectively for similar amounts of MWCNTs reinforcements. The thermo-gravimetric analysis (TGA) indicated the optimum thermal stability at 1 phr of GONRs content compared to the increasing stability with increasing MWCNTs content within PA6. The differential scanning calorimetry (DSC) curves indicated the optimum reinforcing capacity of GONRs at 0.5–3 phr reinforcements, as compared to those increasing for increasing MWCNTs content. An optimum reinforcing capacity at lower amounts of GONRs as compared to MWCNTs was confirmed from shifting trends of intensity peaks in Raman and FTIR spectra curves of the composites. It was attributed to high surface area and functional groups along the edges of GONRs. Altogether, the GONRs/PA6 composites possess excellent potential for applications in automotive and aerospace components, ballistics equipments, electronics, biomedicals, sensors, etc., requiring high mechanical and thermal stability.</div></div>\",\"PeriodicalId\":11266,\"journal\":{\"name\":\"Diamond and Related Materials\",\"volume\":\"151 \",\"pages\":\"Article 111766\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diamond and Related Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925963524009798\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925963524009798","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Viscoelastic and thermal properties of unzipped multiwalled carbon nanotubes reinforced polyamide-6 composites
The excellent reinforcing capability of carbon nanofillers along with increasing demand for advanced polymer composites in automobiles, aircraft, and defense sectors motivate the research community to explore detailed mechanical, thermal, and electrical properties of carbon-based polymer nanocomposites for various applications. In this work, 0.1 to 7 parts per hundred ratios (phr) of multiwalled carbon nanotubes (MWCNTs) and unzipped MWCNTs (referred to as graphene oxide nanoribbons (GONRs)) were individually reinforced into polyamide-6 (PA6) matrix by twin-screw extrusion and standard sized specimens were prepared by the injection molding process. The interaction among PA6 and nanofillers were analyzed using Raman and FTIR spectroscopy. The oscillatory rheometry measurement at 0.1 rad/s angular frequency showed a 110.7 % rise in storage modulus and a 12.6 % rise in loss modulus for 0.1 phr GONRs reinforcements. Both the values raised by 100 % and 12.5 %, respectively for similar amounts of MWCNTs reinforcements. The thermo-gravimetric analysis (TGA) indicated the optimum thermal stability at 1 phr of GONRs content compared to the increasing stability with increasing MWCNTs content within PA6. The differential scanning calorimetry (DSC) curves indicated the optimum reinforcing capacity of GONRs at 0.5–3 phr reinforcements, as compared to those increasing for increasing MWCNTs content. An optimum reinforcing capacity at lower amounts of GONRs as compared to MWCNTs was confirmed from shifting trends of intensity peaks in Raman and FTIR spectra curves of the composites. It was attributed to high surface area and functional groups along the edges of GONRs. Altogether, the GONRs/PA6 composites possess excellent potential for applications in automotive and aerospace components, ballistics equipments, electronics, biomedicals, sensors, etc., requiring high mechanical and thermal stability.
期刊介绍:
DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices.
The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.