Craig E. Simpkins , Peter J. Bellingham , Kiri Reihana , James M.R. Brock , George L.W. Perry
{"title":"利用基于个体的模型评估两种新出现的植物病原体对新西兰奥特亚罗瓦北部森林的影响","authors":"Craig E. Simpkins , Peter J. Bellingham , Kiri Reihana , James M.R. Brock , George L.W. Perry","doi":"10.1016/j.ecolmodel.2024.110938","DOIUrl":null,"url":null,"abstract":"<div><div>Globally, forest ecosystems face many threats to their resilience. During the last 20 years, two plant pathogens have become of widespread concern in Aotearoa-New Zealand (NZ): kauri dieback (a soil-borne disease caused by <em>Phytophthora agathidicida</em> and affecting <em>Agathis australis</em>, a large and long-lived gymnosperm) and myrtle rust (a wind-borne disease caused by <em>Austropuccinia psidii</em> and affecting members of the Myrtaceae). The long-term consequences of these pathogens are unclear, but they could drive significant changes in forest composition and ecosystem function. Here, we use an individual-based forest model for northern NZ, enabling us to explore some of these stressors. The model has previously been used to explore the dynamics of northern forests in NZ. To examine how myrtle rust and kauri dieback might affect forest dynamics under various scenarios we refined the model by (i) representing additional species, (ii) including an underlying edaphic gradient in addition to competition for light, (iii) simulating the effects of the plant pathogens kauri dieback and myrtle rust and (iv) porting the model from NetLogo 6 to Julia. Our simulation experiments suggest that myrtle rust may hasten the decline of two early successional species that we evaluated but has less effect on carbon storage. On the other hand, kauri dieback may lead to the stand-level loss of all <em>Agathis australis</em> and a median decline in aboveground live carbon storage of up to 55 % compared to undiseased stands after 500 years. The model experiments do not identify any interactive effects between the two pathogens. As with other efforts to model NZ's forest ecosystems, the model struggles to capture the regeneration dynamics of very long-lived species. Regeneration dynamics and evaluating a broader pool of the tree species common in the forests of northern NZ are where we will focus on future model development.</div></div>","PeriodicalId":51043,"journal":{"name":"Ecological Modelling","volume":"500 ","pages":"Article 110938"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating the effects of two newly emerging plant pathogens on northern Aotearoa-New Zealand forests using an individual-based model\",\"authors\":\"Craig E. Simpkins , Peter J. Bellingham , Kiri Reihana , James M.R. Brock , George L.W. Perry\",\"doi\":\"10.1016/j.ecolmodel.2024.110938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Globally, forest ecosystems face many threats to their resilience. During the last 20 years, two plant pathogens have become of widespread concern in Aotearoa-New Zealand (NZ): kauri dieback (a soil-borne disease caused by <em>Phytophthora agathidicida</em> and affecting <em>Agathis australis</em>, a large and long-lived gymnosperm) and myrtle rust (a wind-borne disease caused by <em>Austropuccinia psidii</em> and affecting members of the Myrtaceae). The long-term consequences of these pathogens are unclear, but they could drive significant changes in forest composition and ecosystem function. Here, we use an individual-based forest model for northern NZ, enabling us to explore some of these stressors. The model has previously been used to explore the dynamics of northern forests in NZ. To examine how myrtle rust and kauri dieback might affect forest dynamics under various scenarios we refined the model by (i) representing additional species, (ii) including an underlying edaphic gradient in addition to competition for light, (iii) simulating the effects of the plant pathogens kauri dieback and myrtle rust and (iv) porting the model from NetLogo 6 to Julia. Our simulation experiments suggest that myrtle rust may hasten the decline of two early successional species that we evaluated but has less effect on carbon storage. On the other hand, kauri dieback may lead to the stand-level loss of all <em>Agathis australis</em> and a median decline in aboveground live carbon storage of up to 55 % compared to undiseased stands after 500 years. The model experiments do not identify any interactive effects between the two pathogens. As with other efforts to model NZ's forest ecosystems, the model struggles to capture the regeneration dynamics of very long-lived species. Regeneration dynamics and evaluating a broader pool of the tree species common in the forests of northern NZ are where we will focus on future model development.</div></div>\",\"PeriodicalId\":51043,\"journal\":{\"name\":\"Ecological Modelling\",\"volume\":\"500 \",\"pages\":\"Article 110938\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Modelling\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304380024003260\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Modelling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304380024003260","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Evaluating the effects of two newly emerging plant pathogens on northern Aotearoa-New Zealand forests using an individual-based model
Globally, forest ecosystems face many threats to their resilience. During the last 20 years, two plant pathogens have become of widespread concern in Aotearoa-New Zealand (NZ): kauri dieback (a soil-borne disease caused by Phytophthora agathidicida and affecting Agathis australis, a large and long-lived gymnosperm) and myrtle rust (a wind-borne disease caused by Austropuccinia psidii and affecting members of the Myrtaceae). The long-term consequences of these pathogens are unclear, but they could drive significant changes in forest composition and ecosystem function. Here, we use an individual-based forest model for northern NZ, enabling us to explore some of these stressors. The model has previously been used to explore the dynamics of northern forests in NZ. To examine how myrtle rust and kauri dieback might affect forest dynamics under various scenarios we refined the model by (i) representing additional species, (ii) including an underlying edaphic gradient in addition to competition for light, (iii) simulating the effects of the plant pathogens kauri dieback and myrtle rust and (iv) porting the model from NetLogo 6 to Julia. Our simulation experiments suggest that myrtle rust may hasten the decline of two early successional species that we evaluated but has less effect on carbon storage. On the other hand, kauri dieback may lead to the stand-level loss of all Agathis australis and a median decline in aboveground live carbon storage of up to 55 % compared to undiseased stands after 500 years. The model experiments do not identify any interactive effects between the two pathogens. As with other efforts to model NZ's forest ecosystems, the model struggles to capture the regeneration dynamics of very long-lived species. Regeneration dynamics and evaluating a broader pool of the tree species common in the forests of northern NZ are where we will focus on future model development.
期刊介绍:
The journal is concerned with the use of mathematical models and systems analysis for the description of ecological processes and for the sustainable management of resources. Human activity and well-being are dependent on and integrated with the functioning of ecosystems and the services they provide. We aim to understand these basic ecosystem functions using mathematical and conceptual modelling, systems analysis, thermodynamics, computer simulations, and ecological theory. This leads to a preference for process-based models embedded in theory with explicit causative agents as opposed to strictly statistical or correlative descriptions. These modelling methods can be applied to a wide spectrum of issues ranging from basic ecology to human ecology to socio-ecological systems. The journal welcomes research articles, short communications, review articles, letters to the editor, book reviews, and other communications. The journal also supports the activities of the [International Society of Ecological Modelling (ISEM)](http://www.isemna.org/).