{"title":"注意力感知语义相关性预测中文句子阅读","authors":"Kun Sun , Haitao Liu","doi":"10.1016/j.cognition.2024.105991","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, several influential computational models and metrics have been proposed to predict how humans comprehend and process sentence. One particularly promising approach is contextual semantic similarity. Inspired by the attention algorithm in Transformer and human memory mechanisms, this study proposes an “attention-aware” approach for computing contextual semantic relevance. This new approach takes into account the different contributions of contextual parts and the expectation effect, allowing it to incorporate contextual information fully. The attention-aware approach also facilitates the simulation of existing reading models and their evaluation. The resulting “attention-aware” metrics of semantic relevance can more accurately predict fixation durations in Chinese reading tasks recorded in an eye-tracking corpus than those calculated by existing approaches. The study’s findings further provide strong support for the presence of semantic preview benefits in Chinese naturalistic reading. Furthermore, the attention-aware metrics of semantic relevance, being memory-based, possess high interpretability from both linguistic and cognitive standpoints, making them a valuable computational tool for modeling eye-movements in reading and further gaining insight into the process of language comprehension. Our approach emphasizes the potential of these metrics to advance our understanding of how humans comprehend and process language.</div></div>","PeriodicalId":48455,"journal":{"name":"Cognition","volume":"255 ","pages":"Article 105991"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attention-aware semantic relevance predicting Chinese sentence reading\",\"authors\":\"Kun Sun , Haitao Liu\",\"doi\":\"10.1016/j.cognition.2024.105991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, several influential computational models and metrics have been proposed to predict how humans comprehend and process sentence. One particularly promising approach is contextual semantic similarity. Inspired by the attention algorithm in Transformer and human memory mechanisms, this study proposes an “attention-aware” approach for computing contextual semantic relevance. This new approach takes into account the different contributions of contextual parts and the expectation effect, allowing it to incorporate contextual information fully. The attention-aware approach also facilitates the simulation of existing reading models and their evaluation. The resulting “attention-aware” metrics of semantic relevance can more accurately predict fixation durations in Chinese reading tasks recorded in an eye-tracking corpus than those calculated by existing approaches. The study’s findings further provide strong support for the presence of semantic preview benefits in Chinese naturalistic reading. Furthermore, the attention-aware metrics of semantic relevance, being memory-based, possess high interpretability from both linguistic and cognitive standpoints, making them a valuable computational tool for modeling eye-movements in reading and further gaining insight into the process of language comprehension. Our approach emphasizes the potential of these metrics to advance our understanding of how humans comprehend and process language.</div></div>\",\"PeriodicalId\":48455,\"journal\":{\"name\":\"Cognition\",\"volume\":\"255 \",\"pages\":\"Article 105991\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognition\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010027724002774\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognition","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010027724002774","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
Attention-aware semantic relevance predicting Chinese sentence reading
In recent years, several influential computational models and metrics have been proposed to predict how humans comprehend and process sentence. One particularly promising approach is contextual semantic similarity. Inspired by the attention algorithm in Transformer and human memory mechanisms, this study proposes an “attention-aware” approach for computing contextual semantic relevance. This new approach takes into account the different contributions of contextual parts and the expectation effect, allowing it to incorporate contextual information fully. The attention-aware approach also facilitates the simulation of existing reading models and their evaluation. The resulting “attention-aware” metrics of semantic relevance can more accurately predict fixation durations in Chinese reading tasks recorded in an eye-tracking corpus than those calculated by existing approaches. The study’s findings further provide strong support for the presence of semantic preview benefits in Chinese naturalistic reading. Furthermore, the attention-aware metrics of semantic relevance, being memory-based, possess high interpretability from both linguistic and cognitive standpoints, making them a valuable computational tool for modeling eye-movements in reading and further gaining insight into the process of language comprehension. Our approach emphasizes the potential of these metrics to advance our understanding of how humans comprehend and process language.
期刊介绍:
Cognition is an international journal that publishes theoretical and experimental papers on the study of the mind. It covers a wide variety of subjects concerning all the different aspects of cognition, ranging from biological and experimental studies to formal analysis. Contributions from the fields of psychology, neuroscience, linguistics, computer science, mathematics, ethology and philosophy are welcome in this journal provided that they have some bearing on the functioning of the mind. In addition, the journal serves as a forum for discussion of social and political aspects of cognitive science.